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Abstract
In this paper a digital adaptive algorithm for path
tracking of underwater vehicles in many degrees of
freedom (up to six) was presented. It is based on speed-
gradient laws and sampled-data models constructed
with Adams-Bashforth approximations. Here it is as-
sumed that no knowledge is required of the matrices of
the Coriolis and centripetal forces, buoyancy, linear and
quadratic damping. An analysis of stability for the path
tracking problem is presented in which an optimal and,
alternatively, a suboptimal control action are employed.
The features of the approach are illustrated by means of
a numerically simulated case study of a 6-degrees-of-
freedom underwater vehicle maneuvering in the water
column and sea bottom.
Key words
Underwater vehicle, nonlinear dynamics, sampled-
data models, adaptive control, stability, residual set.

1 Introduction
In the past decade, new design tools and systematic
design procedures has been developed to adaptive con-
trol for a set of general classes of nonlinear systems
with uncertainties, for instance, integrator backstep-
ping [Krstić, Kanellakopoulus and Kokotović, 1995],
speed-gradient control [Fradkov, Miroshnik and Niki-
forov, 1999], among others. In the absence of modeling
uncertainties, adaptive controllers can achieve in gen-
eral global boundedness, asymptotic tracking, passivity
of the adaptation loop irrespectively of the relative de-
gree, and systematic improvement of transient perfor-
mance [Krstić, Kokotović and Kanellakopoulus, 1993].
Common applications in path tracking of unmanned
vehicles are characterized by analog control ap-
proaches [Fossen, 1994; Inzartev, 2009]. The main
reason is that the continuous-time nonlinear vehicle
dynamics is typically available in the form of ordi-
nary differential equations (ODEs). There is practically
an absence of digital control approaches in this field.
Moreover, the translation of ODE-based descriptions to

time-discrete models when applying digital technology
is too complex, unless a simple digitalization method,
for instance the simple Euler’s approximation, is car-
ried out [Smallwood and Whitcomb, 2003; Cunha,
Costa and Hsu, 1995]. This generally provides a good
control performance if motions are rather slow. An-
other reason is the complexity of the dynamics itself,
above all for path tracking problems in many degrees
of freedom like in the case of underwater vehicles.
One particular characteristic of underwater vehicles is
the high degree of uncertainty in the system matrices,
namely of the inertia, Coriolis and centripetal forces,
buoyancy and linear and nonlinear damping. Although
the inertia matrix can be determined by means of sim-
ple experiments and calculations, this is not the case
with the other ones that usually need expensive re-
search and test facilities to be determined. So, the abil-
ity of the control system to catch information of the
dynamics adaptively from measures would be highly
desired in unmanned submarine vehicles [Jordán and
Bustamante, 2009].
In this paper, we will describe the problem of dig-
ital controller design on the basis of highly precise
sampled-data models. With this modelling tool the
problem of high-performance guidance of underwater
vehicles is introduced. The main feature of the digital
control approach will be the ability of adaptation to un-
certainties in the system matrices. Finally, a case study
will illustrate the goodness of the our approach.

2 Vehicle Dynamics
Many systems are described as the conjugation of
two ODEs in generalized variables, namely one for the
kinematics and the other one for the inertia (see Fig. 1).
The block structure embraces a wide range of vehicle
systems like mobile robots (MR), unmanned aerial ve-
hicles (UAV), spacecraft and satellite systems (SSS),
autonomous underwater vehicles (AUV) or remotely
operated vehicles (ROV), though with slight distinctive
modifications in the structure among them.



In this paper underwater vehicles in six degrees of
freedom (DOF), like ROVs, are focused. The degree of
interconnection among states is complex and involved,
with accentuated influence of state-dependent Coriolis
and centripetal, drag and cable forces. So we can say
that the results developed here for the most complex
case also will comprehend the more simple cases of
MR’s, UAV’s, SSS’s and AUV’s.
Let η = [x, y, z, ϕ, θ, ψ]T be the generalized position
vector referred on a earth-fixed coordinate system
termed O0, with displacements x, y, z, and rotation
angles ϕ, θ, ψ about these directions, respectively.
Additionally let v = [u, v, w, p, q, r]T be the general-
ized rate vector referred on a vehicle-fixed coordinate
system termed O, oriented according to its main axes
with translation rates u, v, w and angular rates p, q, r
about these directions, respectively. The vector τ is
the generalized propulsion vector applied on O (also
the future control action of a controller), τ c is a force
perturbation applied on O (for instance the cable tug
in ROVs), ηc is a perturbation of the position with
respect to O

0
, and finally vc is a velocity perturbation

with respect to O (for instance the fluid current in
ROVs/AUVs or wind rate in UAVs).

ODE for the
Kinematics

 τ
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 η
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Figure 1. Physical model structure for vehicle
dynamics.

The vehicle dynamics can be described by [Fossen,
1994] (see Fig. 1)

.
v =M−1

³
−C(v)v−D(|v|)v+g(η) + τ c + τ

´
(1)

.
η = J (η)(v+vc), (2)

where M , C and D are the inertia, the Coriolis-
centripetal and the drag matrices, respectively, g is the
buoyancy vector and J is the matrix expressing the
transformation from the inertial frame to the vehicle-
fixed frame. Finally, there may exist some perturba-
tion τ c in the inertial system handled as an generalized
force applied on O, for instance due to wind as in case
of UAVs, fluid flow in AUVs, or cable tugs in ROVs.
For future developments in the controller design, it is
necessary to factorize the system matrices into constant
and variable arrays as [Jordán and Bustamante, 2008]

C(v) =
6X
i=1

Ci.× Cvi(v) (3)

D(|v|) = Dl +
6X
i=1

Dqi |vi| (4)

g(η) = B1 g1 (η) +B2 g2 (η) (5)

with ".×" being an element-by-element array product.
The matrices Ci,Dl,Dqi , B1 and B2 are constant and
supposed unknown, while Cvi ,g1 and g2 are state-
dependent and computable arrays and vi is an element
of v.
As usually done, we will assume the rapid thruster
dynamics is parasitic in comparison with the domi-
nant vehicle dynamics [Jordán and Bustamante, 2008].
Besides, inertial, kinematics and positional perturba-
tions of the cable, current and measures as in case of
subaquatic vehicles are not considered in the analysis.
Their influences in the dynamics are quite similar to
them of the model uncertainties considered here.

3 Sampled-Data Model
Let us now regard an Adams-Bashforth approxima-
tion in the explicit form with a sampling period h
[Butcher, 2003]. Thus, a one-step-ahead prediction of
order s is

vn+1 = vtn+a1Gtn+...+ asGtn−s+1 (6)
ηn+1 = ηtn+b1Htn + ...+ bsHtn−s+1 , (7)

where ai and bi are associated model coefficients of
the linear combination obtained by using a Lagrange
formula for polynomial interpolation, for instance, for
s = 4 they are a1 = b1 =

55h
24 , a2 = b2 = −59h24 ,

a3 = b3 =
37h
24 , a4 = b4 = − 9h24 . Moreover, vtn and

ηtn , and similarlyGti andHti , are samples of the state
vectors and the right-member functions of the ODE, re-
spectively.
The sequence of samples vtn and ηtn is referred here
to as the exact sampled-data model of the system.
Now, taking samples of the right members of the ODE
system (1)-(2) with (3)-(5) it yields

Gtn = M−1
Ã

6X
i=1

Ci.× Cvitn
−Dlvtn− (8)

−
6X
i=1

Dqi |vitn |vtn+B1 g1tn+B2 g2tn
!
+M−1τn

Htn = Jtnvtn (9)

where Cvitn
means Cvi(vtn ), g1tn and g2tn mean

g1 (ηtn ) and g2 (ηtn ) respectively, J−1tn means
J−1(ηtn ) and vitn is an element of vtn . Similar
expressions can be obtained for the other sampled
functions Gti and Hti in (6)-(7). Besides, the control
action τ is retained one sampling period h by a sample
holder, so it is valid τn = τ tn .
As τn is the control action to be determined, it is use-
ful to construct the one-step-ahead prediction for v as



vn+1 = vtn+
¡
a1Gtn+M

−1τn
¢
+ (10)

+
sX

i=2

ai
¡
Gtn−i+1+M

−1τn−i+1
¢
,

where clearlyGtj =Gtj−M−1τ j .
The accuracy of one-step-ahead predictions is defined
by the local model errors as

εvn+1 = vtn+1−vn+1 (11)
εηn+1 = ηtn+1−ηn+1 , (12)

with εηn+1 ,εvn+1 ∈ O(hs) and O being the order
function that expresses the order of magnitude of the
sampled-data model errors. Moreover, sinceG and H
are Lipschitz continuous in the attraction domains in v
and η, then the samples, predictions and local errors all
yield bounded. So, in absence of other errors other than
εηn+1 ,εvn+1 , it is valid the property vn+1 → vtn+1 and
ηn+1 → ηtn+1 for h→ 0.

4 Design of a Digital Adaptive Controller
The next step is devoted to the design of a general
digital adaptive controller based on speed-gradient con-
trol laws [Fradkov, Miroshnik and Nikiforov, 1999]. To
this end let us suppose the control goal lies on the path
tracking of both geometric and kinematic reference tra-
jectories in discrete-time form specified in discrete time
as ηrtn and vrtn , respectively.
Accordingly for the digital model translation, we try
out the following definitions for the exact path errors
[Conte and Serrani, 1999]

v
ηtn = ηtn−ηrtn (13)
v
vtn = vtn−J−1tn η̇rtn+J

−1
tn Kp

v
ηtn . (14)

where Kp = KT
p ≥ 0 is a design gain matrix affecting

the geometric path error. Clearly, if vηtn≡0, then by
(14) and (2), it yields vtn−vrtn≡0.
We now define a cost functional of the path error en-
ergy as

Qtn =
v
η
T

tn

v
ηtn+

v
v
T

tn

v
vtn , (15)

which is a positive definite and radially unbounded
function in the error vector space.
We will then design a digital state feedback for the
path tracking problem and afterward search for condi-
tions to ensure the regulation of Qtn about zero as tn
tends to infinity for any small h.
Using (15), (11)-(12) and (13)-(14) the incremental
value tn+1, and after some calculations it yields

∆Qtn=Qtn+1 −Qtn= (16)·
(I − b1Kp)

v
ηtn+b1

³
Jtn

v
vtn+η̇rtn

´
+

+
sX

i=2

biJtn−i+1vtn−i+1+ηrtn−ηrtn+1+εηn+1
¸2
−vη2tn+

+

vvtn+J−1tn η̇rtn−J
−1
tn Kp

v
ηtn−

−J−1tn+1 η̇rtn+1
+J−1tn+1Kp

v
ηtn+1+a1

³
Gtn+M

−1
τn

´
+

+
sX

i=2

as(Gtn−i+1+M
−1
τn−i+1 )+εvn+1

#2
−vv2tn ,

For the sake of simplicity in the notation the inner prod-
ucts for vectors such as xTx and xTAxwere indicated
as x2 and Ax2 , respectively.
As by similar designs of fixed controllers one can try
to use τn to compensate so many terms in (16) as pos-
sible. So one can conveniently split τn into two terms
as

τn = τn1 + τn2 , (17)
where the first one is chosen with the aim of canceling
almost all kinematics terms in (16) as

τn1 = M

µ
−Kv

v
vtn−

1

a1
J−1tn η̇rtn+ (18)

+
1

a1
J−1tn Kp

v
ηtn+

1

a1
J−1tn+1 η̇rtn+1

− 1
a1

J−1tn+1Kp
v
ηtn+1−

− bGtn−
sX

i=2

ai
a1

³bGtn−i+1+M
−1τn−i+1

´!
,

with Kv = KT
v ≥ 0 another design matrix together

withKp, affecting the kinematic errors. Since systems
matrices such as Ci,Dqi ,Dl, B1 andB2 are unknown,
they are taken into account in (18) by means of estima-
tions bGtj forGtj with j=n,...,n−s+1. Thus
bGtj=

6X
i=1

Ui.× Cvitj
−U7vtj−

6X
i=1

U7+i |vitj |vtj+ (19)

+M−1U14 g1tj+M
−1U15 g2tj ,

where the matrices Ui will account for every unknown
systemmatrix in the partial control action τn1 and their
calculations will be made later by means of an adaptive
law.
On the other hand, the second component τn2 will
result from solving (16) after having included (18) in
∆Qtn . So

∆Qtn = a(M−1τn2 )
2+bTM−1τn2+c+ (20)

+
v
η
T

tna1Kp (a1Kp − 2I) vηtn+
+
v
v
T

tna1Kv (a1Kv − 2I) vvtn+
+F(εηn+1 ,εvn+1 ),

with
a=a21 (21)

b=2a1

³³
(I−a1Kv)

v
vtn +́ (22)

+
sX

i=1

ai(Gtn−i+1− bGtn−i+1 )

!



c=a21

Ã
Jtn

v
vtn+η̇rtn +

sX
i=2

bi
a1

Jtn−i+1vtn−i+1

!2
(23)

+a1

³
Jtn

v
vtn+η̇rtn

´T ³
ηrtn−ηrtn+1

´
+

+
³
ηrtn−ηrtn+1

´T ³
ηrtn−ηrtn+1

´
+

+2 (I − a1Kp)
v
ηtn

³
a1

³
Jtn

v
vtn+η̇rtn

´
+

+ηrtn−ηrtn+1
´
+

sX
i=1

a2i (Gtn−i+1− bGtn−i+1 )
2
+

+2
sX

i=1

ai(Gtn−i+1− bGtn−i+1 )
T
³
(I − aiKv)

v
vtn

´
and the vector function F fulfilling F(εηn+1 , εvn+1 )→
0 when h→ 0.
We could now search for the real roots of the polyno-
mial a

¡
M−1τn2

¢2
+ bTM−1τn2 + c = 0 (if there

exist), and then ensure ∆Qtn < 0 under certain condi-
tions, at least inside an attraction domain excluding a
residual set around zero (due to local model errors).
There exist here two inconveniences. The first one is
we do not know the functions Gtj in (22)-(23) to im-
plement τn2 , even when τn1 in (18) could be some-
how implementable. The second one is we have not
yet define any estimation bGtj of these functions that
can ensure∆Qtn < 0.
This last point is addressed in the next section, while
the first one is satisfied by simply choosing new coef-
ficients termed ā, b̄ and c̄ of a,b and c, respectively,
with expressions
ā = a (24)
b̄ = 2a1(I−a1Kv)

v
vtn (25)

c̄ = c−
sX

i=1

a2i (Gtn−i+1− bGtn−i+1 )
2
+ (26)

−2
sX

i=1

ai(Gtn−i+1− bGtn−i+1 )
T
³
(I − aiKv)

v
vtn

´
.

Now, they all are computable and serve to select real
roots of ā

¡
M−1τn2

¢2
+b̄TM−1τn2+c̄ = 0 for im-

plementing τn2 . So it is valid

τn2 =
−M
2ā

b̄± M

2ā

r
b̄T b̄− 4āc̄

6
o, (27)

with o a vector with all the six elements equal to one.
In order to achieve minimal energy of the control action
or eventually to avoid saturation, one can choose the
solution with minimal norm.
So the control action to be applied to the vehicle sys-
tem is τn = τn1 +τn2 with the two components given
in (18) and (27), respectively.
If, on the contrary, there are no real roots, one can
choose the real part of (27). The implicances of this
choice in the stability of the control system will be an-
alyzed later.

5 Adaptive Laws
We will employ adaptive laws of the kind speed-
gradient for determining the controller matrices Ui

in bGtj . Our approach is an extension for digital
controllers of the continuous-time forms proposed in
[Fradkov, Miroshnik and Nikiforov, 1999]. To this end
we define at tn

Uin
∆
= Uin−1 − Γi

∂∆Qtn

∂Uin
, (28)

with a gain matrix Γi = ΓTi ≥ 0 and ∂∆Qtn

∂Uin
being a

gradient matrix satisfying

∂∆Qtn

∂Ui
=

∂

∂Ui

Ã¡
b−b¢T ¡b−b¢

2ā
∓ (29)

∓b
T−bT
2ā

q
b
T
b−4āc̄+c−c̄

!
.

Here the expression for ∆Qtn was developed for the
solution for τn2 in (27).
Now b, c and c̄ depend on the different controller ma-
trices Ui’s through the functions bGtj ’s in (19). We can
see from (29) that ∆Qtn will be always convex in the
matrices Ui. This means that for an arbitrary element
ui of any controller matrix Ui in ∆Qtn with any pair
of values u1 and u2 of ui, the inequality

∆Qtn(u1)−∆Qtn(u2) ≤
∂∆Qtn

∂u1
(u1 − u2) , (30)

is fulfilled.

6 Stability Analysis
In this section we attempt to show convergence of er-
ror trajectories to a residual set in the path tracking
problem.
Let us first define particular values for the controller
matrices Ui’s and referred them to as U∗i ’s. So, using
the unknown system matrices (3)-(5) and (8) following
matrices are proposed

U∗i = Ci, with i = 1, ...6 (31)
U∗7 = Dl (32)
U∗i = Dqi , with i = 8, ...13 (33)
U∗14 = B1 (34)
U∗15 = B2 . (35)

Then we consider ∆Qtn for a particular control action
constructed with constant matrices Ui = U∗i . In this
situation it can be deduced from (25)-(26) and with
Gtj=

bGtj that
¡
b−b¢=0 and c−c̄ = 0. So this par-

ticular functional yields

∆Q∗tn =
v
η
T

tna1Kp (a1Kp − 2I) vηtn+ (36)

+
v
v
T

tna1Kv (a1Kv − 2I)vvtn+
+F(εηn+1 ,εvn+1 ).

It is noticing that ∆Q∗tn < 0, at least in an attraction
domain equal to

B =
nv
ηtn ,

v
vtn ∈ R6 ∩ B0

o
, (37)

with B0 a residual set around zero when the design ma-
trices satisfy the conditions

2

a1
I > Kp ≥ 0 (38)

2

a1
I > Kv ≥ 0. (39)



The residual set B0 depends on εηn+1 and εvn+1 , and
clearly it is the null point at the limit when h→ 0.
Let us consider at this point a Lyapunov function

Vtn = ∆Qtn +
1

2

15X
i=1

6X
j=1

¡
ũTn
¢
ij
Γ−1i (ũn)ij − (40)

−1
2

15X
i=1

6X
j=1

¡
ũTn−1

¢
ij
Γ−1i (ũn−1 )ij

with (ũn)ij =(un−u∗n)ij , where un and u∗n are vec-
tors corresponding to the column j of the matrices Uin
and U∗in , respectively. Moreover after some calcula-
tions we attain

Vtn=∆Qtn+
1

2

15X
i=1

6X
j=1

¡
∆uTn

¢
ij
Γ−1i (ũn+ũn−1 )ij(41)

= ∆Qtn +
15X
i=1

6X
j=1

¡
∆uTn

¢
ij
Γ−1i (ũn)ij −

−1
2

15X
i=1

6X
j=1

¡
∆uTn

¢
ij
Γ−1i (∆un)ij

≤ ∆Qtn −
15X
i=1

6X
j=1

µ
∂∆Qtn

∂Uin

¶T
j

(ũn)ij

≤ ∆Q∗tn < 0 in B ∩ B0,
with ∆un a column vector of Uin − Uin−1 . At the
first inequality, the adaptive law (28) for the column
vector (∆un)ij was replaced by the column vector

−Γi
³
∂∆Qtn

∂Uin

´
j
in the right member. At the second in-

equality, the convexity property of ∆Qtn in (30) was
applied for any pair (U1 = Uin , U2 = U∗i ).
This analysis has proved convergence of the er-
ror paths when real roots exist for the equation:
a
¡
M−1τn2

¢T
M−1τn2 + b

TM−1τn2 + c = 0.
If on the contrary 4ac > bTb occurs at some
time tn, one chooses the real part of (27), which
is the one that minimizes the value of the function
a
¡
M−1τn2

¢T
M−1τn2 +b

TM−1τn2 +c. So a sub-
optimal control action is employed instead equal to

τn2 =
−M
2a

b, (42)

and yields the functional∆Q∗tn + c− 1
4ab

Tb. It can be
shown from the expressions in (22) and (23) that there
exist a suffiently small sampling time h that makes the
∆Q∗tn ≤ 1

4ab
Tb− c , it is the control stable for a sub-

optimal control action τn2 applied constantly. So, the
suboptimal τn2 provide in fact a large attraction do-
main with a appropriate selection of Kp and Kv, how-
ever with a larger residual set than B0 depending also
on the magnitude of

¡
c− 1

4ab
Tb
¢
, apart from εηn+1

and εvn+1 .

7 Case Study: Maneuver on the Seabottom
In order to illustrate the features of the adaptive ap-
proach, let us consider the path tracking problem for
the underwater vehicle described in Fig. 2. The vehi-
cle has to navigate along a geometric path with a pre-
scribed kinematics in time. This consists of different

motions in the water column which are typically em-
ployed in sampling maneuvering over the sea floor.
The digital control algorithm is implemented accord-
ing to (27), (42) and adaptive laws which are given in
(28). The sample time h was chosen 0.1 sec. and the
simplest Adams-Bashforth model of s = 1 was em-
ployed.
The previous knowledge of the system dynamics only
contemplates the inertia matrix. The other system ma-
trices are completely unknown. The self-tuning phase
and the stationary phase are described in Figs. 3 and 4
(on the left and right, respectively) for the position vec-
tor η with elements x, y, z, ϕ, θ, ψ, and for the kine-
matics vector v with elements u, v,w, p, q, r, respec-
tively.
One notices on the left hand that the transient phase
elapses a short period of about 5 sec. During the whole
navigation, the optimal and suboptimal solutions for
τn have taken turns in time. However, this alternation
appears much more frequently in the stationary state
than in the adaptation phase, i.e., when the path errors
are quite small. These conforms the residual set that
results with an order of magnitude of about 10−4.
The all-round performance reached with the proposed
adaptive approach is judged as a high one in the nu-
meric simulations and comparable with the analogous
control system obtained at the limit for h → 0 [Jordán
and Bustamante, 2007].

Initial position

Reference path

Run path
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R

Figure 2. Path tracking of an underwater vehicle in the
column and sea bottom.

8 Conclusions
In this paper a digital adaptive algorithm for path
tracking of vehicles in many degrees of freedom (up to
six) was presented. It is based on speed-gradient laws
and sampled-data models constructed with Adams-
Bashforth approximations.
The control system design results more complex than
in the case of continuous-time controllers. Even
when the translation of the analogous phenomenolog-
ical ODE system of the vehicle dynamics to Adams-
Bashforth approximations of any order looks uncom-
plicated, the derivation of a digital speed-gradient
adaptive control action is not straightforward. The
main reason is that the design functional of the path
tracking errors has a quadratic form, in contrast with
the linear form in the continuous-time case for the same



dynamics. However, the adaptive digital control system
performs comparatively so good as the analogous one
with the advantage that its implementation in computer
is much more adequate.

Though the adaptive controller design does not re-
quire of the knowledge of the matrices of the Coriolis
and centripetal, buoyancy, linear and quadratic damp-
ing, it is however demanded a-priori the knowledge of
the mass matrix. This is perhaps not a serious restric-
tion, because this could be estimated with simple ex-
periments, which does not occur with the remaining
system matrices.
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Figure 3. Evolution of the geometric paths.
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Besides, an analysis of stability of the adaptive control
system for path tracking was presented in which an
optimal and, alternatively, a suboptimal control action
were employed. The results indicate that the adaptive
controller is able to conduct both geometric and
kinematic error paths inside a residual set that depends
on the model error magnitude of the Adams-Bashforth
approximation.
Finally, an illustration of the features of the approach
was described by means of a numerically simulated
case study of a 6-degrees-of-freedom underwater vehi-
cle maneuvering in the water column and sea bottom.
Future works consider the analysis of the algorithm ro-
bustness when noise perturbations are included in the
system.
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Krstić, M. , Kanellakopoulus, I. and Kokotović, P. V.
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