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Abstract

We extend the connection graph stability method,
originally developed for symmetrically coupled net-
works, to the general asymmetrical case. The princi-
pal new component of the method is the transforma-
tion of the directed connection graph into an undi-
rected graph. The extension of the method to asym-
metrical coupling consists in symmetrizing the graph
and associating a weight to each path. This weight
involves the node unbalance of the two nodes. The
synchronization condition for this symmetrized-and-
weighted network then also guarantees synchroniza-
tion in the original non-symmetrical network.

1 Introduction

The increasing interest in synchronization of limit-
cycle and chaotic dynamical systems [1, 2, 3] has led
many researchers to consider the phenomenon of syn-
chronization in large complex networks of coupled
oscillators (see, e.g. [4, 5] for a sampling of this large
field). The strongest form of synchrony in chaotic
systems is complete synchronization when all oscil-
lators of the network acquire identical chaotic be-
havior. The central question about synchronization
of periodic chaotic oscillators coupled in a network
is: When is such synchronous behavior stable, espe-
cially in regard to coupling strengths and coupling
configurations of the network?

Complete synchronization in undirected and directed
networks of linearly coupled limit-cycle and chaotic
oscillators has received much attention (see, e.g.,
[6, 7, 8, 9, 10, 11, 12, 13, 14]). These studies show
that both local and global stabilities of complete syn-
chronization depend on the eigenvalues of the Lapla-
cian connectivity matrix. Complete synchronization
was also studied by means of the adaptive control
methods (see, e.g., [15] and the references therein).

In a recent paper [16], we proved that the synchro-
nization condition can also be derived from graph
theoretical quantities using the connection graph
method. The main step of the method is to estab-
lish a bound on the total length of all paths pass-
ing through an edge on the connection graph. This
approach was originally developed for undirected
graphs and applied to global synchronization in com-
plex networks [17, 18]. More recently, we showed that
the method can be directly applied to asymmetrically
coupled networks with node balance [19]. Node bal-
ance means that the sum of the coupling coefficients
of all edges directed to a node equals the sum of the
coupling coefficients of the all edges directed outward
from the node. We proved that for node balanced
networks it is sufficient to symmetrize all connections
by replacing a unidirectional coupling with a bidi-
rectional coupling of half the coupling strength. The
bound for global synchronization in this undirected
network then holds also for the original directed net-
work.



In this paper we review and extend our approach
to networks with arbitrary asymmetrical connections
[20]. The connection graph of such a network is di-
rected and the coupling coefficient from node i to
node j is in general different from the coupling coef-
ficient for the reverse direction. The new ingredient
of the method is the transformation of the directed
connection graph into an undirected weighted graph.
This is done by symmetrizing the graph and associat-
ing a weight to each edge of the undirected graph and
to each path between any two nodes. This weight in-
volves the ”node unbalance” of the two nodes. This
quantity is defined to be the difference between the
sum of connection coefficients of the outgoing edges
and the sum of the connection coefficients of the in-
coming edges to the node. As in the case of node-
balanced networks, the synchronization criterion de-
rived for this symmetrical network then guarantees
synchronization in the asymmetrical directed net-
work.

2 Problem statement

We consider a network of n interacting nonlinear l-
dimensional dynamical systems (oscillators). We as-
sume that the individual oscillators are all identical,
even though our results can be generalized to slightly
non-identical systems. The composed dynamical sys-
tem is described by the n × l ordinary differential
equations

ẋi = F (xi) +
n∑

k=1

dik(t)Pxk, i = 1, ..., n, (1)

where xi = (x1
i , ..., x

l
i) is the l-vector containing

the coordinates of the i-th oscillator, the function
F : Rl → Rl is nonlinear and capable of exhibit-
ing periodic or chaotic solutions, and P is a pro-
jection operator that selects the components of xi

that are involved in the interaction between the in-
dividual oscillators. Without loss of generality, we
consider a vector version of the coupling with the di-
agonal matrix P = diag(p1, p2, ..., pl), where pν = 1,
ν = 1, 2, ..., s and pν = 0 for ν = s + 1, ..., l.

The connection matrix D with entries dik is an n ×
n matrix with zero row-sums and nonnegative off-
diagonal elements such that

n∑
k=1

dik = 0 and dii = −
n∑

k=1;k 6=i

dik, i = 1, ..., n.

This ensures that the coupling is of diffusive nature
(on an arbitrary coupling graph) and any solution
x(t) for a single oscillator is also a solution of the

coupled system (1). The connection matrix D is as-
sumed to be asymmetrical without any further con-
straints. This is in contrast to our previous papers,
where we required the symmetry of the connection
matrix [16] or the zero column-sums property of an
asymmetrical connection matrix [19]. The coupling
matrix D is associated with the edge-weighted di-
rected connection graph D, where to each individual
system corresponds a node and for each pair of nodes
i, j with i 6= j and such that dij > 0, there is an edge
directed from from j to i. The weight assigned to this
edge is dij . The connection graph is assumed to be
connected.

We admit an arbitrary time dependence in the cou-
pling matrix even if t is not explicitly stated every-
where. All constraints and criteria for the coupling
matrix are understood to hold for all times t.

The completely synchronous state of the system (1)
is defined by the linear invariant manifold D = {x1 =
x2 = ... = xn}, often called the synchronization man-
ifold. Typically, in networks of continuous time oscil-
lators, the synchronization manifold becomes stable
when the coupling strength between the oscillators
exceeds a critical value. Our main objective is to
obtain conditions of global asymptotic stability of
synchronization in the system (1). We want to de-
termine threshold values for the coupling strength
required for synchronization, and to reveal their de-
pendence on the network topology.

3 Asymmetrically coupled networks

In contrast to symmetrically coupled networks,
where any connection graph configuration allows
synchronization of all the nodes, synchrony in asym-
metrically coupled networks is only possible if there
is at least one node which directly or indirectly in-
fluences all the others. In terms of the connec-
tion graph, this amounts to the existence of a uni-
formly directed tree involving all the vertices. A
star-coupled network where secondary nodes drive
the hub is a counter example, where such a tree does
not exist and synchronization is impossible.

Before we proceed with the study of asymmetrical
networks, we should impose the following constraint
on the dynamics of the coupled system (1).

3.1 Main hypothesis
Assumption 1. There exist a parameter a > 0 and
a matrix

H = diag(h1, ..., hs, H̃), where hi = 1 for i = 1, ..., s
and H̃ is positive definite



such that the quadratic form defined by H is a Lya-
punov function for all the auxiliary linear systems
(varying x ∈ B1)

ξ̇ =
∂F

∂x
(x)ξ − aPξ (2)

simultaneously. Equivalently, all matrices

H

(
∂F

∂x
(x)− aP

)
+

(
∂F

∂x
(x)− aP

)T

H (3)

must be negative definite.

This constraint basically requires that the individ-
ual dynamical systems can be stabilized by adding
a diagonal term for each state component that is in-
volved in the interaction. In other words, we assume
that there exists a critical value a∗, sufficient to make
the equilibrium state O of the auxiliary system (2)
globally stable.

Assumption 1 is closely related to the requirement
that the network (1) composed of two unidirection-
ally coupled systems globally synchronizes when the
coupling c12 exceeds the critical value a. Many net-
works of linearly coupled limit-cycle and chaotic os-
cillator exhibit global synchronization such that As-
sumption 1 is satisfied. It was proved for coupled
Lorenz systems [16], Chua circuits, Hindmarsh-Rose
neuron models [18], etc.

For example, for two unidirectionally x-coupled
Lorenz oscillators: ẋ1 = σ(y1 − x1) + c12(x2 − x1)

ẏ1 = rx1 − y1 − x1z1

ż1 = −bz1 + x1y1 ẋ2 = σ(y2 − x2)
ẏ2 = rx2 − y2 − x2z2

ż2 = −bz2 + x2y2

(4)

Assumption 1 is true, and the bound for the synchro-
nization coupling threshold is calculated as follows
[16] a = c∗12 = b(b+1)(r+σ)2

16(b−1) − σ.

3.2 Main theorem for asymmetrical coupling
Theorem 1 [20].
Under Assumption 1, complete synchronization is
globally stable in the network (1) with an arbitrary
coupling graph D if for all k

dk + Dk >
a

n
bk, where bk =

n∑
j>i; k∈Pij

L(Pij) (5)

is the sum of the ”lengths” L(Pij) of all chosen paths
Pij which pass through a given edge k that belongs
to the symmetrized undirected graph. This weighted

path length L(Pij) is defined as follows

L(Pij) =


|Pij | , if Dc

i + Dc
j < 0; and there is

a link k between i and j

|Pij |χ(1 + Dc
i +Dc

j

2a ) = |Pij |χ(1 + Dij

a ),
otherwise,

where the function χ is the identity for positive and
0 for negative arguments, and |Pij | is the number of
edges in each Pij .

The mean coupling coefficient dk = dij+dji

2 defines
an edge k on the undirected symmetrized graph. An
extra coupling strength Dk = |D

c
i +Dc

j

2n | is added to the
edges of the symmetrized connection graph for which
the mean node unbalance Dc

i + Dc
j is negative.

In the case where the directed connection graph is
not a uniformly directed tree involving all nodes and
complete synchronization of all the nodes is impos-
sible, the condition for synchronization is simply im-
possible to satisfy.

Theorem 1 directly leads to the following method
to establish our stability condition for complete syn-
chronization.
Step 1. Determine the ”node unbalance” for each

node Dc
i =

n∑
j=1

dji. In terms of graphs, the column

sum Dc
i =

n∑
k=1

dki =
∑
k 6=i

dki + dii =
∑
k 6=i

dki −
∑
k 6=i

dik

amounts to the difference between the sum of the
coupling coefficients of all edges directed outward
from node i and the sum of the coupling coefficients
of all the edges directed to node i.
Step 2. Symmetrize the connection graph by re-
placing the edge directed from node i to node j by
an undirected edge with half the coupling coefficient
dij/2. In the case where there is an edge directed
from node i to node j and another edge in the re-
verse direction, the pair of directed edges is replaced
by an undirected edge with mean coupling coefficient
dk = dij+dji

2 .
Step 3. Choose a path Pij between each pair of
nodes. Usually, the shortest path is chosen. Some-
times, however, a different choice of paths can lead
to lower bounds [18].
Step 4. For each path Pij determine the mean node
unbalance of the endnodes i and j.

Identify paths of length 1, i.e edges of the sym-
metrized graph, with negative mean node unbalance
Dc

i + Dc
j . For these edges, calculate and add extra

strength Dk = |D
c
i +Dc

j

2n | to the symmetrized coupling
dk.

For all other paths Pij , namely, paths of length 1 with
nonnegative mean node unbalance and any paths



composed of at least two edges, calculate the quan-
tities Dij = Dc

i +Dc
j

2 and 1 + Dij

a . Associate weight
1 + Dij

a to the path length of Pij if 1 + Dij

a > 0, and
zero weight, otherwise.
Step 5. For each edge k of the symmetrized-and-
weighted connection graph determine the inequality

dk + Dk >
a

n
bk, where bk =

n∑
j>i; k∈Pij

L(Pij).

Step 6. Combine the inequalities either to describe
the set of common values for all connection coeffi-
cients that guarantee global complete synchroniza-
tion or to describe in general the set of connection
coefficients vectors that guarantee synchronization
if we allow for coefficients that vary from link to
link. Finally, the bound for global synchronization
in the symmetrized-and-weighted network holds also
for the original asymmetrical network.

Let us show how to apply the general method to two
examples of asymmetrical networks.

4 Examples

4.1 Two unidirectionally coupled oscillators
Consider the simplest directed network with n = 2
and coupling strength d (Fig. 1a).

Figure 1: Simplest directed network and its sym-
metrized analog. The directed link is re-
placed by the undirected edge with half the
coupling strength. Here, the mean node un-

balance,
Dc

1+Dc
2

2
= 0, so that the symmetrize-

and-weight operation amounts to the sym-
metrization. The path length P12 remains
unweighted.

Step 1. Determine the node unbalance for node 1
and 2 : Dc

1 = −d and Dc
2 = d.

Step 2. Symmetrize the graph as shown in Fig. 2b:
d1 = d+0

2 = d
2 .

Step 3. Choose a path between each pair of nodes.
Here, the graph has only one branch.

Steps 4. For each path determine the mean
node unbalance of the endnodes. Here, this quantity
is equal to 0 : Dc

1 + Dc
2 = d − d = 0. Therefore,

Dk ≡ D1 = 0
2·2 = 0 and Dij ≡ D12 = 0.

Steps 5-6. For the edge 1 determine the inequality:
d
2 + 0 > a

2 |P12|. The path length |P12| = 1 such that
the final inequality becomes d > a.

Recall that by Assumption 1, a is an upper bound
for synchronization in this network such that our
method gives the correct synchronization bound.

4.2 Irregular network
Consider the asymmetrical seven-node network of
Fig. 2.

Figure 2: (a) Unidirectionally coupled network with
uniform coupling d. (b) Symmetrized ana-
log of (a) with weighted bidirectional con-
nections. Arrows indicate the direction of
coupling along an edge; edges without ar-
rows are coupled bidirectionally. The width
of the links may be thought of as the cou-
pling strength.

As before, we use the six-step process to derive the
synchronization condition of Theorem 1.
Step 1. Calculate the difference between the sum of
the coupling coefficients of all edges directed outward
from node i and the sum of the coupling coefficients
of all the edges directed to node i. Thus, determine
the node balance for each node of the graph:

Dc
1 = d− d = 0 Dc

2 = d− 3d = −2d
Dc

3 = d− d = 0 Dc
4 = 3d− d = 2d

Dc
5 = 2d− d = d Dc

6 = d− 2d = −d
Dc

7 = d− d = 0.

Step 2. Symmetrize the graph by replacing each di-
rected edge by an undirected edge with half the cou-
pling strength: dk = d

2 , k = 1, ..., 10 (see Fig. 2b).
Step 3. Choose a path Pij between any pair of nodes
i, j of the symmetrized graph. It turns out that it
is often advantageous to choose paths that contain
edges with negative mean node unbalance (this quan-
tity will be calculated in Step 4.)



Our choice of paths is

P12 : edge1 P13 : edges1, 2 P14 : edge8
P15 : edges1, 10 P16 : edges1, 7, 6 P17 : edges1, 7
P23 : edge2 P24 : edges2, 3 P25 : edge10
P26 : edges7, 6 P27 : edge7 P34 : edge3
P35 : edges2, 10 P36 : edges2, 7, 6 P37 : edges2, 7
P45 : edge4 P46 : edge9 P47 : edges9, 6
P56 : edge5 P57 : edges5, 6 P67 : edge 6

Step 4. For each path Pij determine the mean node
unbalance Dc

i +Dc
j

2 for endnodes i and j :

P12 : −d P13 : 0 P14 : d P15 : d
2

P16 : −d
2 P17 : 0 P23 : −d P24 : 0

P25 : −d
2 P26 : − 3d

2 P27 : −d P34 : d
P35 : d

2 P36 : −d
2 P37 : 0 P45 : 3d

2

P46 : d
2 P47 : d

2 P56 : 0 P57 : d
2

P67 : −d
2 .

We now categorize the mean node unbalance terms
as follows.

If Dc
i +Dc

j

2 < 0 and there is an edge k of the sym-
metrized graph linking directly i and j, we set Dk =∣∣∣Dc

i +Dc
j

2·7

∣∣∣ and add this additional coupling strength
to dk. This relates to edges 1, 2, 6, 7, 10 (see Fig. 2b):

D1 =
∣∣∣Dc

1+Dc
2

2·7

∣∣∣ = d
7 D2 =

∣∣∣Dc
2+Dc

3
2·7

∣∣∣ = d
7

D6 =
∣∣∣Dc

6+Dc
7

2·7

∣∣∣ = d
14 D7 =

∣∣∣Dc
2+Dc

7
2·7

∣∣∣ = d
7

D10 =
∣∣∣Dc

2+Dc
5

2·7

∣∣∣ = d
14 .

In all other cases, the terms Dc
i +Dc

j

2 are either non-
negative or negative but there is no direct link be-
tween i and j, so that all these terms become Dij .
Step 5. For each edge of the graph determine the
inequality (5).

Edge 1 (link between nodes 1 and 2):

d1+D1 =
d

2
+

d

7
>

a

7
bk, where bk =

n∑
j>i; k∈Pij

L(Pij).

The chosen paths that pass through the edge 1 are
P12, P13, P15, P16, P17. Their weighted lengths
L(Pij) are calculated in accordance with Theorem 1:

L(P12) = |P12| = 1 since Dc
1 + Dc

1 < 0
and there is an edge between 1 and 2

L(P13) = |P13|χ(1 + D13
a ) = 2

L(P15) = |P15|χ(1 + D15
a ) = 2(1 + d

2a )
L(P16) = |P16|χ(1 + D16

a ) = 0
L(P17) = |P17|χ(1 + D17

a ) = 2.

Summing up all the lengths, we obtain

d

2
+

d

7
>

a

7

[
1 + 2 + 2

(
1 +

d

2a

)
+ 2

]
=

7a + d

7
.

Therefore, the synchronization condition for the edge
1 becomes d > 2a.

Exactly as for the edge 1, we can calculate the syn-
chronization bounds for other edges. These bounds
can be summarized as follows

edge 1 : d > 2a edge 2 : d > 18a
7 edge 3 : d > 6a

5
edge 4 : d > a

2 edge 5 : d > 3a
5 edge 6 : d > 5a

edge 7 : d > 10a
9 edge 8 : d > 2a

5 edge 9 : d > 3a
edge 10 : d > 5a

2 .

Step 6. Combining the synchronization criteria for
all the edges, we take the maximum constraint to
achieve global synchronization. This constraint cor-
responds to the weakest link. Here, the weakest link
is the edge 6. This edge is a bottle neck for syn-
chronization of the entire network and requires the
maximum coupling strength to synchronize all oscil-
lators of the network. Therefore we conclude that
for

d > d∗ = 5a

we can guarantee global synchronization of the net-
work.

5 Conclusions

We have extended the connection graph stability
method for synchronization in an arbitrary non-
symmetrical network of coupled identical oscillators.
The condition is composed of a set of inequalities
which have to be satisfied, one inequality for each
edge of the connection graph. Each inequality in-
volves a term that depends only on the individual dy-
namical systems, namely the coupling strength that
guarantees global synchronizing of two systems. The
other terms of the inequality depend only on the
graph structure and on the coupling coefficients.

In small and also in sufficiently regular networks, the
condition can be written down explicitly. In other
networks, a combinatorial algorithm of polynomial
complexity can establish the inequalities on the cou-
pling coefficients that guarantee global complete syn-
chronization. The main computational task is to de-
termine a path between any two nodes of the graph,
typically the shortest path.

We should remark that our generalized method is
valid for networks of slightly nonidentical oscilla-
tors. In this case, perfect synchronization cannot
exist anymore, but approximate synchronization is



still possible. We have previously shown that in
the case of symmetrically coupled networks, similar
global stability conditions of approximate synchro-
nization can be derived within the framework of the
connection graph method [16]. This carries over to
asymmetrical heterogenous networks.
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