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Abstract 
In the article mathematical and computer modeling 

of metallic structure of the big fully rotating 
millimetre-wave radio-telescope is considered. The 
technique and algorithms of development of support-
rotary mechanism mathematical models as nonlinear 
controlled plants and their reduction are given. 
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1 Introduction 
Researches of deep space cosmic ray sources require 

developing big and fully rotating radio-telescopes 
(RT), which main dish diameters are about 100 
meters. These radio-telescopes able to receive 
millimetric waves (1-10 mm) with wave intensity 10-
30 W/m2Hz, which is a thousand times smaller than 
for a modern centimetre-wave RT. 
If a wave-length is fixed, a beam width is known to 

decrease with increasing main dish diameter. In 
millimetric waves it leads to toughen the requirements 
for the pointing accuracy and nonlinear effects take 
place, therefore it is necessary to develop more 
adequate models of the RT metallic structure (MS), 
which can provide pointing RT with high accuracy. 
The radio-telescope metallic structure is used to 

support and move the reflecting surfaces system (the 
dish system), in order that radio-waves accepted from 
the Universe are focused in the special point, where 
the receiver registering the characteristics of waves is 
installed. The radio-wave intensity distribution as a 

function of the wave frequency and the relative 
angular coordinates between the cosmic source and 
the receiver is a main characteristic of the RT pointing 
accuracy. 
The metallic structure has a mass of about a 

thousand tons, and a size of up to hundred meters. It is 
a complex engineering construction loaded by 
gravitation, wind and temperature. There are close 
tolerance requirements of dish system. The deviations 
of the deformed dish surface from the theoretical 
shape must be less than several tens of microns, and 
the accuracy of angular pointing musts be of about 1 
seconds of angle. 
In spite of the small angular velocity of pointing, 

such as a daily rotation of the Earth (15 second of 
angle / second), the problem of assurance of the high 
pointing accuracy substantially depends on 
conformity of RT MS mathematical models to the real 
RT MS. 
The main purpose of RT MS models is to estimate in 

real time the state-vector components, which are not 
measured but essentially influence on the radio-
telescope pointing accuracy and the radio-wave 
reception, and, hence, on the radio-telescope 
instrumental error. 
The more precisely it is required to estimate, the 

estimator has the greater order of differential 
equations. Obviously there is a compromise between 
the required accuracy of estimations and the order of 
differential equation of estimator. This compromise 
can be reached by solving of a properly formulated 
problem. 
 



2 The full-scale finite element model of the radio-
telescope metallic structure 
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Figure 1. The finite-element model of the radio-

telescope metallic structure. 
 

The radio-telescope metallic structure as a 
mechanical system can be described with various 
levels of detail. The initial data of such models are 
working drawings of separate elements and units, 
properties of materials of these elements, 
conditions of fixing, installation and adjustment. 
Using these data and special computer programs 
such as Ansys, Nastran, etc., which are a finite-
element environment for solving of a wide variety 
of engineering problems, including analysis of 
designs, the computer full-scale finite-element 
model is worked out. Such model allows to define 
geometrical, weight, inertial and flexibility 
parameters of separate elements, units, and 
mechanical object as a whole. 
In the full-scale finite-element model (FEM) the 

equations of motion are formulated in the master 
coordinates: 
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,  
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where η  is the vector of master coordinates; ξ  is 
the vector of physical coordinates; u  is the vector 
of external loadings; Ω  is the diagonal matrix of 
squares of the eigen frequencies ordered on 
increase; H  is the basis transformation matrix 
from basis of master coordinates to basis of 

physical coordinates; Ρ  is the symmetric matrix of 
inertia; Ξ  is the symmetric stiffness matrix; Π  is 
the matrix of external loadings in basis of physical 
coordinates; Г  is the matrix of external loadings 
in basis of master coordinates; δ  is the dissipation 
factor. 

As an example of the finite-element analysis the 
modeling of metallic structure of the fully rotating 
millimetre-wave radio-telescope which main dish 
diameter is 70 meters (RT-70, Suffa) can be 
considered. These research is carrying out at the 
St. Petersburg State Polytechnical University 
[Borovkov A. I., Shevchenko D. V., 
Gimmelman V. G., 2003]. 

Using the Ansys environment for RT-70 MS as 
a result of the finite-element analysis the matrixes 
Ω  and H  were obtained. These matrixes are non-
stationary and depend on initial state in the general 
case. The vector η  cans have thousand of 
variables. If diagonal elements of matrix Ω  are 
sorted ascending then the influence of variables of 
the η  with greater serial numbers on the physical 
variables ξ  will be the less, than the serial number 
is more. 
It gives grounds for reduction of the system (1) by 

rejection of a large part of variables with big 
numbers. The matrix H  becomes rectangular 
(extended on columns), therefore the 
transformation of the reduced system in basis of 
master coordinates to the reduced system in basis 
of physical coordinates is ambiguous and thus the 
symmetry of matrix of inertia and stiffness matrix 
can be broken. In this case there is a good reason to 
consider the model as a system of firm bodies 
connected by elastic elements. Thus, the number of 
firm bodies should correspond to the number of the 
eigen frequencies accounted for in model. We have 
called coordinates of such system as generalized 
coordinates, and velocities as generalized 
velocities. 
We have presented such model in a symbol form. 

It allows to investigate structural and topological 
properties of RT MS, gyroscopic effects, influence 
of limped nonlinearities as dry friction, backlash, 
etc., and also influence of separate parameters on 
dynamics of the system as a whole by rather 
simple computing means. 
As an example the reduced mathematical symbol 

lumped parameters model of MS will be 
considered. This model consists of the seven firm 
bodies (Fig. 2). 

3 The nonlinear analytical model of the radio-
telescope metallic structure 
We have presented the metallic structure as a system 

of seven firm bodies (Fig.2). Each body has six 
degrees of freedom and its position in space is defined 
by six generalized coordinates. The angular and linear 
displacements of firm bodies from each other are 
chosen as coordinates. Firm bodies are connected by 
elastic elements which deformations obey a 
generalized Hooke’s law. The base coordinate system 



0E  is connected with the Earth (Fig.2, b) and which 
is set in space by three unit length vectors (orts): 0

xe , 
0
ye , 0
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a) The calculated scheme of RT-70 MS: 0 – the Earth; 
1 – the Platform; 2 – the Base; 3 – the 
Counterbalance; 4 – the Main Dish Base; 5 – the 
Main Dish; 6 – the Girder; 7 – the Counterreflector; 
b) The MS calculated scheme graph; c) The 
coordinate axes and the elementary rotation angles. 

 
Figure 2. The representation of RT-70 MS as a 

calculated scheme with limp parameters 
 

We shall define elementary «units» from which 
equations of the system in the form of matrix 
algorithms will be constructed. For this purpose we 
will consider the kinematic pair, consisting of the 
platform (body i ) and the base (body j ). Bodies have 
the coordinate systems (the body axes) iE  and jE  
accordingly which origins are situated in the firm 
bodies weight centers. At the initial moment of time 
with the body j  the constructional coordinate system 

jcE , received by parallel displacement of iE  on a 
vector ( )Tjc jc jc jc

i i i ir x y z= , is connected. Because 
of external influences and elasticity of design the 
angular and linear displacements of the body j  
relatively jcE  take place. 
The position of jE  in jcE  is defined by the 

elementary rotation angles j
jcβ j

jcθ , j
jcα  relatively 

orts jc
xe jc

ye , jc
ze  and the variable vector of parallel 

displacement ( )Tj j j j
jc jc jc jcr x y z= . Two bases jcE  

and jE  transform each other by the rotation matrix 
jc
jC : 

.j jc jc
jE E C=  

The matrix i
jC  is a product of elementary rotation 

matrixes: 
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The transition from one coordinate system to 
another, caused by some vector of parallel 
displacement (constant or variable), is carried out 
using matrix of parallel displacement: 
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where j
jcr  is a matrix formed by elements of the 

vector of parallel displacement (in this case - j
jcr ). 

For our kinematic pair the motion jE  in jcE  is 
carried out using vector of parallel displacement j

jcr  

and rotation matrix jc
jC , the general matrix of 

coordinate system transformation has a form: 
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The derivative of the matrix n
mL  is defined by 

equation mn
m

n
m

n
m LL ,Φ⋅=

•

, where 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=Φ mn

m
mn

m

mn
mmn

m v ,,

,
, 0

ω

ω
, mn

m
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matrixes formed by a vector of angular and linear 
velocities , , ,|n m n m n m

m m mV v ω⎡ ⎤= ⎣ ⎦  of the body m  
relatively the body n , in body axes of the body m . 
Coordinate columns of vectors of linear mn

mv ,  and 
angular mn

m
,ω  velocities m - body in mE  are called the 

quasi-velocities. 
For this kinematic pair firm bodies with indexes i  

and j  with six degrees of freedom, three angles j
jcβ , 

j
jcθ , j

jcα  and components of the vector of parallel 

displacement j
jcr  are chosen as pair generalized 

coordinates j
jcq  (2): 

T,j j x j j j j j
jc jc jc jc jc jc jcq x y z β θ α⎡ ⎤= ⎣ ⎦  (2) 

The generalized velocities n
mq  of the given kinematic 



pair are defined in (3): 
Tj j j j j j j

jc jc jc jc jc jc jcq x y z β θ α⎡ ⎤= ⎣ ⎦  (3) 
The kinematic equation of kinematic pair ji,  with 
six degrees of freedom has a form: 
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(4) 

where jc
jε  is the Euler's matrix. 

During system research there is a necessity to impose 
holonomic constraints on its motion using joints. 
Then displacements on some generalized coordinates 
are absent and, hence, the corresponding generalized 
velocities are equal to zero. We will enter the vectors 
of axis mobility j

kf  of a pair ji, , where k  is a 
number of generalized coordinate on which 
holonomic constraint is imposed. 

T
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, .
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… …  

Then equation (4) becomes ,jc j jc j j
j j jcV M f q= . As 

all firm bodies of MS calculated scheme have six 
degrees of freedom the matrix jf  is identity, and 
will not be taken into consideration. 
By similar way the generalized coordinates for each 

kinematic pair are certain according to the graph in 
the figure 2, where constructional displacements 
taking place in system are also specified. 
In the compact form the vector of the generalized 

coordinates Cq  and the vector of generalized 
velocities Cq  we have a form (5): 

1 2 3 4 5 6 7
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The kinematic equation of all system becomes: 
CCC qMV = , 
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CM diag M M M M M M M⎡ ⎤= ⎣ ⎦  

It is essential to transform CV  to quasi-velocities 
relatively the base coordinate system 0

CV , the matrix 
defining this transformation is called a configuration 
matrix of system CL  (6). The kinematic equation in 

0
CV  has a form: 
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For the further constructions we enter a new matrix: 
LMS T

C= , C
T

C qSV = . (7) 
The matrix S  is called a system structural matrix and 
contains the information about the system structure. 
The MS dynamic equations has a form (8): 

0, 0, 0, ,  1, 2, 7,k k k k k k k
k k k k k k kV V R F kΘ + Φ Θ = + = …  (8) 

where , , , , , ,| | | | |k k x k y k z k x k y k z
k k k k k k kR R R R Mr Mr Mr⎡ ⎤= ⎣ ⎦  

are internal forces ( xk
kR , ) and torques ( xk

kMr , ) acting 
on the k  –body represented in the body axes; 

, , , , , ,| | | | |k k x k y k z k x k y k z
k k k k k k kF F F F M M M⎡ ⎤= ⎣ ⎦  are 

external forces ( xk
kF , ) and torques ( xk

kM , ) acting on 
the k  –body represented in the body axes; k

kΘ  is a 
matrix of inertia of the firm body, this matrix is 
defined in the body axes. In our case internal forces 
and the moments are forces of viscous and dry friction 

k
kN , force of elastic interaction k

kEl , constructional 
damping k

kD , external forces are control k
kU , gravity 

k
kG  and wind loading k

kW . 
The equations (8) becomes (9): 
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Having multiplied the equation (9) at the left on the 
structural matrix of system S , we lead system to the 
generalized forces, having considered (7) we receive: 
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It is essential to define the generalized forces of 
elastic interaction CQ  and constructional damping 

dQ . For each elastic link we enter a matrix of 
elasticity iC  and a matrix of damping iD : 

,c cQ Cq= −  ,d CQ Dq= −  

[ ]1 2 3 4 5 6 7, , , , , , ,C diag C C C C C C C=  

[ ]1 2 3 4 5 6 7, , , , , , .D diag D D D D D D D=  
A vector of acceleration of free falling is set in the 

base coordinate system 0g , hence, it is necessary to 
pass from 0E  in the body axes iE . Gravity forces of 
the system gQ  are defined by the equation: 

.g CQ SG=  
The control CU  acting on system has a form: 

[ ]T1
1 10 0 0 0 0 ,DvU M=

[ ]T3
3 20 0 0 0 0 ,DvU F=  

1 3
1 3| 0 | | 0 | 0 | 0 ,CU U U⎡ ⎤= ⎣ ⎦  

where 1
1U  is the control on an azimuthal platform; 

3
3U  is the control on swinging part; 1DvM  is the 

moment created by a drive of an azimuthal platform; 
2DvF  is the force created by a drive of the swinging 

part. 
Expression for the generalized control will be: 

Cu SUQ = . 
The numerical example shown bellow is a result of 

calculations of RТ-70 MS finite-element model. 
These data were used in described above RT MS 
symbol model. 
As a vector of physical coordinates are chosen the 

angles of rotations relatively of an azimuthal axis of 
platform, base, base of main dish, main dish, girder, 
counter-reflector and counterbalance: 

α= [αpl, αbas, αbmd, αmd, αgir, αcr, αcb]T (rad). 
Following a principle of superposition, we consider, 

that each chosen physical coordinate corresponds the 
line of a matrix  H . What spectrum of eigen 
frequencies from a matrix   Ω  corresponds to chosen 
physical vector α we shall define by comparison 
among themselves numerical values of elements a 
vector-line of a matrix H . 
As a result we have reduced matrixes rΩ , rH : 

rΩ = -1000diag(0, 0.062, 0.362, 0.511, 0.562, 0.695, 4.147] (1/c2 ), 

rH  = [-0.378  -0.3394  0.2688  -0.0243  0.0009  0.0049  0.0628 
-0.378  -0.2571  -0.1131  0.0244  -0.0011  0.0085  -0.9598 
-0.378  -0.1291  -0.2194  0.1078  -0.0086  -0.0687  0.1452 
-0.378   0.7304   0.0372  -0.0123  0.0009  0.0056  -0.0019 
-0.378  -0.2816  -0.2322  0.0947  0.0071    0.222  0.1992 
-0.378  -0.3161  -0.6441  0.9769  0.9999  -0.9725  -0.0315 
-0.378  -0.2989  -0.6297  -0.1543  0.0041  -0.0148 0.1143] 
 

Ansys easily allows to calculate the moments of 
inertia of the chosen firm bodies: 

rΡ  = 107 [2.1  0.4  0.6472  1.6  0.32  0.0011  0.4] (kg*s2)/rad). 
The stiffness matrix calculated from the equation 

1.r r r r rH H −Ξ = Ρ Ω  

rΞ  = 1.0e+010 
[-0.5350    0.5350            0            0            0            0          0 

0.5350   -1.4754   0.5050            0  0.2280            0  0.2074 
0             0.5050  -0.5890   0.0840           0            0           0 
0                      0   0.0840  -0.0840           0            0           0 
0             0.2280            0            0  -0.2286  0.0006           0 
0                      0            0            0   0.0006  -0.0006          0 
0             0.2074            0            0            0           0  -0.2074] 

(kgм/rad) 

The natural spectrum, which components are 
calculated under the formula 

f=sort(sqrt(diag(-Ωr))/(2*pi)). 
f'=[0  1.2512  3.0281  3.5985  3.7730  4.1964  10.2493]. (Hz) 

4 Conclusion 
The definition of parameters of mathematical models 

of the radio-telescope metallic structure, which are 
required for estimation of inaccessible to direct 
measurement components of state vector, is connected 
with a minimization problem of dimension of state 
vector. 
In this article the solving of this problem, when 

requirements to accuracy of the estimations increase, 
is shown to be possible only with using methods of 
mathematical programming and finite-element 
analysis. 
The obtained models are quasistationary, and can be 

used as estimators of state vectors. Because of it their 
parameters are "freezing" on specified time interval 
and provides recalculation when one stationary point 
change to another. 
The given approach to modeling of RT MS has 

allowed to prove an opportunity to create the 
precision control system for millimetre-wave RT 
which main dish diameter is 70 meters. The modeling 
accuracy of pointing of this system is 4 seconds of 
angle. 
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