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Abstract
This paper presents proof of the hybrid stability of

the pre-designed walking like trajectory and its feed-
back tracking controller for the so-called four-link. The
four-link is a planar mechanical chain having four de-
grees of freedom and three actuators placed between
its links. In such a way it resembles a pair of legs
with knees. The proof of hybrid stability is based on
computing the appropriate Poincaré map linear approx-
imation and showing numerically that its eigenvalues
are inside the unit disk in the complex plane. Unlike
the frequent approach in robotic walking showing the
stable path following, nature of our designed trajec-
tory enables to prove its tracking including the time de-
pendence. The tested trajectory and the feedback con-
troller were obtained via combination of the design for
the so-called Acrobot and suitable selected collocated
holonomic constraints enforced by feedback imposed
in knees actuators. This approach was published be-
fore but it will be briefly repeated here for the sake of
completeness. Finally, the simulations showing the hy-
brid stability of 150 steps walking of the four-link with
lengths and masses configurations corresponding to an
existing laboratory model will be presented.
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straints, Poincaré section method, collocated con-
straints.

∗PRESENTED AT THE 8TH INTERNATIONAL CONFER-
ENCE ON PHYSICS AND CONTROL, JULY 17-19, 2017, FLO-
RENCE, ITALY.

†Supported by the Czech Science Foundation through the re-
search grant No. 17-04682S.

1 Introduction
The purpose of the paper is to demonstrate the con-

cept of the collocated virtual holonomic constraint by
showing the hybrid stability of the walking-like move-
ment of the mechanical four-link which was designed
using that concept. The hybrid stability will be proved
using the well-known Poincaré section method. More
precisely, the corresponding map will be computed
together with the eigenvalues of its approximate lin-
earization, these eigenvalues are then shown to be in-
side the unit circledisk in the complex plane.
The walking-like trajectory and its correspond-

ing tracking feedback were designed in detail in
[Čelikovský and Anderle, 2016a] using the combina-
tion of two key ideas.
First, the property that the unactuated variable is also

the cyclic one allows to exactly linearize its three di-
mensional subsystem using state space and feedback
transformations. Property of unactuated variable be-
ing cyclic is typical for walking-like configurations. It
means that kinetic energy of the system does not de-
pend on the cyclic variable. This variable is called
also as the absolute orientation angle, while other an-
gles are the so-called shape variables. Alternatively,
with a slight abuse of notation, we may also call that
property as the kinetic symmetry with respect to un-
actuated variable. Based on such favorable property,
for the so-called Acrobot, the hybrid cyclic walking-
like trajectory and its tracking feedback were designed
and shown to be exponentially stable in [Čelikovský
et al., 2008], [Anderle et al., 2009], [Anderle et al.,
2010], [Anderle anďCelikovský, 2009], [Anderle and
Čelikovský, 2011], [Anderle anďCelikovský, 2010].
For a more complete picture, see [Olfati-Saber, 2002],
[Grizzle et al., 2005] where the cyclic property of un-
actuated variable was introduced and discussed as well.
The second cornerstone of the approach presented
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in [Čelikovský and Anderle, 2016a] is to enforce the
so-calledcollocated virtual holonomic constraints
thereby converting any general planar underactuated
mechanical system havingn degrees of freedom and
n− 1 actuators and unactuated cyclic variable into the
same kind of system but withn = 2. Such a system
may be tentatively called as thegeneralized Acrobot
[Čelikovský et al., 2013].

As a consequence,n− 2 actuators are used to enforce
the collocated virtual holonomic constraints in a expo-
nentially stable way while the remaining one is used
to control the residual system - the mentioned general-
ized Acrobot. During the swing phase it can be shown
that such a combination provides exponentially stable
tracking of the pre-designed walking-like trajectory.

Yet, it remain to address the hybrid essence of the
walking. During the double support phase the so-called
impact map occurs and changes impulsively the an-
gular velocities. Pre-designed walking-like trajectory
for the generalized Acrobot obtained in [Anderle and
Čelikovský, 2010] handles this issue ensuring cyclic
character of the multi-step walking. Nevertheless, it re-
mains to ensure that the appropriate virtual holonomic
constraints are also hybrid invariant,i.e. they are pre-
served by the impact map. Necessary conditions to do
so were obtained in [̌Celikovský and Anderle, 2016a].
Based on them, one can pre-design virtual holonomic
constraints in such a way that they are hybrid invari-
ant and simultaneously fulfill other constraints require-
ment. As a matter of fact, these constraints may express
dependence of bending knees on the hips angle, thereby
defining the so-called walking shape.

Previously described contribution belongs to the area
of the underactuated walking design based on the use
of the above mentionedvirtual holonomic constraints
(VHCs). The walking robots design area and even its
more narrow field of underactuated walking design has
been intensively studied during recent decades. See
e.g. [Westervelt et al., 2007; Chevallereau et al., 2009;
Grizzle et al., 2014] for one possible stream of research
and references within there for other approaches. An-
other line of the research can be found in [Pchelkin
et al., 2015], [Spong and Bullo, 2005], [La Herra et al.,
2013], to complete the picture at least to some extent,
as the real survey of the field is out of this current pa-
per scope and purpose. Though the previous references
as well as the present contribution focus are mainly
concerned with the analysis and the design of walk-
ing concepts assuming a perfect model knowledge,
identification and adaptive control are important and
widely studied subfield of the underactuated walking,
seee.g. [Dolinský andČelikovský, 2012], [Dolinský
and Čelikovský, 2017], [Westervelt et al., 2007] and
references within there.

The VHCs are constraints imposed on generalized co-
ordinates that are not consequence of some physical
limitations but rather are to be artificially enforced us-

ing external generalized forces provided by actuators.
These forces are not the natural constraining forces,
i.e. they are not the reaction forces triggered by some
physical constraints. While the reaction forces are pos-
tulated by basic principle of mechanics not to perform
work [Greiner, 2003], the external forces imposing the
VHCs may perform some work.

The analysis of controlled mechanical systems subject
to forced kinematic and dynamic relations goes back
to early 1920’s [Bèghin, 1921]. These relations were
called as the “servo-constraint” later on [Appel, 1953].
The recent and detailed survey can be found in [Ko-
zlov, 2015]. The term “VHCs” emerges and is widely
used during recent two decades only as an alternative
terminology for some types of those forced relations.

The use of the VHCs concept in the underactuated
walking is quite broad and diverse subarea as itself.
Interesting is the use of the VHCs to study the pas-
sive walking down the moderate slope in [Freidovich
et al., 2009]. Passive walking down the moderate slope
is broadly studied and referred since the seminal paper
[McGeer, 1990]. Further use of the VHCs can be found
in [Shiriaev et al., 2014], [Shiriaev et al., 2006], [Shiri-
aev et al., 2005], or alternatively in [Westervelt et al.,
2007; Chevallereau et al., 2009; Grizzle et al., 2014],
[Chevallereau et al., 2003], to mention just a few.

As already noted, the main specific feature of the ap-
proach to be tested in the current paper in comparison
with the above quoted results is that it uses the collo-
cated VHCs that include the directly actuated coordi-
nates only. Moreover, the number of constraints is usu-
ally lower than number of the available input torques.
The restricted system has therefore at least one free in-
put to be used for its further control. This restricted
system is usually the above mentionedgeneralized Ac-
robot - the system with 2 degrees of freedom, one ac-
tuator and unactuated cyclic variable. Such a system
can be transformed into almost linear chain of integra-
tors that allow to generate directly a hybrid periodic
trajectory and then to stabilize it using some robust
techniques [̌Celikovský et al., 2008], [Anderle et al.,
2009], [Anderle et al., 2010], [Anderle andČelikovský,
2009], [Anderle anďCelikovský, 2011], [Anderle and
Čelikovský, 2010].

Note also, that while the above mentioned results
[Shiriaev et al., 2014], [Shiriaev et al., 2006], [Shiri-
aev et al., 2005], [Westervelt et al., 2007; Chevallereau
et al., 2009; Grizzle et al., 2014] are mostly related
with the path following, or alsoorbital stability , the
approach presented in this paper leads to the design
of the periodic time trajectory and its tracking, ase.g.
in [Song and Zefran, 2006a; Song and Zefran, 2006b;
Majumdar et al., 2013].

Concept of the general VHCs was further and more
abstractly investigated in [Mohammadi et al., 2013],
[Maggiori and Consolini, 2013], while the collo-
cated VHCs were introduced in [Čelikovský, 2015]
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and further used in [̌Celikovský and Anderle, 2016b],
[Čelikovský and Anderle, 2016a].
Though the extensive simulations show exponentially

stable walking up to 150 steps, the more rigorous sta-
bility test of the walking designed in [Čelikovský and
Anderle, 2016a] was not performed there. This is ac-
tually the main purpose of the present paper. To han-
dle the hybrid character of the stability, the well-known
method of Poincaré sections is used. Such a stabil-
ity test is performed here for the case of the so-called
four link, i.e. the casen = 4. Still, essence of the re-
sult is numerical, it computes the appropriate Poincaré
map, then numerically finds its eigenvalues and show
its exponential stability. Nevertheless, corresponding
test can be repeated for wide range of system configu-
rations and pre-designed trajectories and thereby to ob-
tain for each particular case its own rigorous proof of
the stability.
Note also, that, strictly speaking, the map computed

here is not the classical Poincaré map corresponding
to orbital stability of the corresponding limit cycle.
Here, the exponentially stable tracking with respect to
time dependence is achieved as well. This means that
eight dimensional matrix is evaluated, rather than the
seven dimensional for the classical approach. This is
bit redundant, since orbital stability is considered in
robotic applications quite sufficient. In robotic termi-
nology, this corresponds to the above mentionedpath
following rather than time dependent trajectory track-
ing. Nevertheless, the terminology here is still accept-
able as one could add artificial extra state variable be-
ing time. In such a way, our eight dimensional matrix
describes properties of the classical Poincaré map for
that extended nine dimensional system. Such a slight
redundancy is due the essence of the method used to
design the walking-like trajectory and its tracking feed-
back.
The rest paper is organized as follows. The next

section briefly presents the model of the four link as
the demonstrative example including its continuous-
time and discrete-time dynamics. The Section 3 de-
scribes some preliminary definitions and results from
[Čelikovský and Anderle, 2016b], [Čelikovský and An-
derle, 2016a] necessary for the further stability analy-
sis. Numerical stability analysis of the four link walk-
ing control via the VHCs and remaining restricted sys-
tem control is done together with simulations of the
robot walking in Section 4. Final section draws briefly
some conclusions and discusses some future research
outlooks.

2 The Model of the Four-link Mechanical Chain
The four link depicted in Figure 1 is in our particular

case a representative ofn-link mechanical chains with
n − 1 actuators attached by one of its ends to a pivot
point where is no actuator. The 4-link has four degrees
of freedom and three actuators placed among its rigid

q1

q2

−q3

q4

τ2

τ3

τ4

Figure 1. The four-link.

links, or in another words, it has two legs with knees
and three actuators. Two actuators are placed in knees
and one actuator is placed between its legs in the hip.
Therefore the four link belongs to the class of the un-
deractuated walking robots with degree of underactua-
tion equal to one.
The movement or walking of the four link consists of

continuous-time and discrete-time dynamics. The con-
tinuous part of the four link movement occurs during a
walking, i.e. when one leg, usually called as aswing
leg is in the air. Whereas, the discrete part occurs when
the swing leg hits the ground,i.e. when both legs are
in contact with the ground. The collision between the
swing leg and the ground is in the literature usually
called as the impact. Only for completeness, the sec-
ond leg, which is in contact with the ground during the
four link movement, is usually called as astance leg.
The impact event is accompanied with change of legs,
i.e. the swing leg becomes the stance leg and vice versa.
The derivation of continuous-time and discrete-time

dynamics below is related to the four-link, however,
procedures can be simply extended to a generaln-link
mechanical chains. In the sequel, the shorter notation
”4-link” will be used as well.

2.1 Continuous-time Dynamics of the 4-link
The continuous part,i.e. when the swing leg of the

four-link is in the air, is modeled by the usual La-
grangian approach. Consider the so-called Lagrangian
for the 4-link being a smooth function of some suitable
chosen generalized coordinates and velocities:

L(q, q̇) = K(q, q̇)−V (q) =
1

2
q̇TD(q)q̇−V (q). (1)

Hereq = (q1, . . . , q4)
⊤ denotes the4-dimensional vec-

tor of (usually angular) generalized coordinates,q̇ =
(q̇1, . . . , q̇4)

⊤ is that of the respective generalized ve-
locities,D(q) = D(q)⊤ > 0 is the inertia matrix,K
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is the kinetic andV the potential energy of the system.
Dynamic equations are then obtained as follows

d

dt

[

∂L

∂q̇

]⊤

−

[

∂L

∂q

]⊤

= u, u ∈ R4, (2)

whereu is the input vector. Any system that can be
written in the form (2) with someL satisfying the above
properties will be shortly called as theLagrangian sys-
tem, cf. [Mohammadi et al., 2013] for the more refined
terminology. Evaluating (2) gives the well-known form
of the mechanical system dynamics

D(q)q̈ + C(q, q̇)q̇ +G(q) = u, (3)

with the so-called Coriolis and centrifugal terms
C(q, q̇) and gravity termsG(q) = −∇V (q).
The configuration of the 4-link is described by the

generalized coordinatesq and it is bounded by one-
sided constraint represents the limitation that, in gen-
eral, two rigid bodies do not penetrate each other. In
this particular case it means that the 4-link swing leg
cannot move under the ground,i.e. the height of the
swing leg’s end-point has to behendpoin(q) > 0 during
the swing leg movement.

2.2 Discrete-time Dynamics of the 4-link
When the swing leg of the 4-link hits the ground at

the end of the step,i.e. hendpoint(q) = 0, the impact
occurs. The result of this event is the instantaneous
jump in angular velocitieṡq whereas the angular posi-
tions q remain unchanged. The impact is modeled as
a contact between two rigid bodies, see e.g. [Brach,
1989], [Keller, 1986]. Crucial in the impact mapping is
an extension of the inertia matrixDe(qe) by adding the
Cartesian coordinates of the stance leg end point. The
impact mapping is based on the following equation

De

[

q̇+e − q̇−e
]

= Fext (4)

accompanied by the following equation

E2(q
−
e )q̇

+
e = 0 (5)

corresponding to the condition of no rebound and no
slipping of the swing leg.De(qe) is the extended in-
ertia matrix,q̇e

+, q̇e
− are extended angular velocities

of the 4-link just after, just before the impact, respec-
tively,Fext corresponds to the contact impulse over the
impact duration and it is given by forces acting in the
end of the swing leg andE2(qe) = ∂Υ(qe)

∂qe
, whereΥ

represents the end point coordinates of the swing leg.
For more details see [Chevallereau et al., 2009]. The

result of equations (4), (5) is the impact matrixΦ(q−)
and the relabeling mapR(q−) with the following ef-
fect:

q+ = R(q−), (6)

q̇+ = Φ(q−)q̇−, (7)

whereq−, q̇− andq+, q̇+ are angular positions and ve-
locities just before the impact and just after the impact
and relabeling, respectively.

3 Walking Design Using the Collocated VHCs
In this section, for the sake of more fluent reading,

some well-known facts from literature and some re-
lated results formulations from [Čelikovský, 2015],
[Čelikovský and Anderle, 2016b], [Čelikovský and An-
derle, 2016a] are repeated. More specifically, the appli-
cation of the VHCs to the underactuated walking robot
and the basic idea of the impact invariant VHCs will be
repeated here.

3.1 The Collocated VHCs in Lagrangian Systems
In [Čelikovský, 2015], [̌Celikovský and Anderle,

2016b] it was shown that for a given underactuated me-
chanical system the so-called restricted underactuated
mechanical system to be further controlled can be ob-
tained using the VHCs.
Virtual holonomic constraints for the system (2-3)

are given byl equalities,1 ≤ l ≤ n,

ϕi(q) = 0, i = 1, . . . , l, (8)

whereϕ1, . . . , ϕl are smooth functions of the gener-
alized coordinates having∀q ∈ Rn linearly indepen-
dent differentialsdϕi(q), i = 1, . . . , l. The VHCs
are called as collocated if and only if they are regular
[Maggiori and Consolini, 2013] and involve the actu-
ated coordinatesqk+1, . . . , qn. The VHCs are called
as flat if after suitable renumbering of the generalized
coordinates they take the form

qn−l+1 ≡ 0, . . . , qn ≡ 0, l ≤ n− k. (9)

Consider the given flat collocated VHCs. To study how
to impose them introduce the following notation

uR =











0k
uk+1

...
un−l











, uC =







un−l+1

...
un






, (10)

whereuR corresponds to the actuators of the so-called
restricted subsystem whereasuC corresponds to the ac-
tuators of the so-called constrained system. In such a
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way, (3) becomes as follows

D(q)q̈ + C(q, q̇)q̇ +G(q) =

[

uR

uC

]

, (11)

q =

[

qR

qC

]

, qR =







q1
...

qn−l






, qC =







qn−l+1

...
qn






, (12)

q̇ =

[

q̇R

q̇C

]

, q̇R =







q̇1
...

q̇n−l






, q̇C =







q̇n−l+1

...
q̇n






, (13)

whereqR, q̇R correspond to the coordinates and the ve-
locities of the restricted system whereasqC , q̇C corre-
spond to the coordinates and the velocities of the con-
strained system. Finally, let

D(q) =

[

DR(q) DRC(q)
D⊤

RC(q) DC(q)

]

, (14)

C(q) =

[

CR(q, q̇)
CC(q, q̇)

]

, G =

[

GR(q)
GC(q)

]

, (15)

whereDR, DC are square(n − l) × (n − l) andl × l
matrices, correspondingly, whileDRC is (n − l) × l
matrix. Finally,CR ∈ R(n−l)×n, GR ∈ Rn−l,CC ∈
Rl×n, GC ∈ Rl.
The Lagrangian system in the form (11) with (10) can

be transformed using an invertible feedback transfor-
mation into a partial exact linearized form which leads
to the following subsystem

DR(

[

qR

0

]

)q̈R + CR(

[

qR

0

]

,

[

q̇R

0

]

)q̇+

GR(

[

qR

0

]

) = (

[

qR

0

]

)uR (16)

which can be regarded as a restriction of (3) to flat
holonomic VHCs (9). This restriction is obviously La-
grangian system with the same degree of underactua-
tionk as original system (3), for details see [Čelikovský
and Anderle, 2016b]. The restriction of original system
(3) into (16) can be enforced by the following feedback
controller

uC = D⊤
RCD

−1
R uR(t)− [DC −D⊤

RCD
−1
R DRC ]×

[diag{KP1, . . . ,KPl}q
C + diag{KV 1, . . . ,KV l}q̇

C ]

+CC(q, q̇)q̇+GC(q)−D⊤
RCD

−1
R [CR(q, q̇)q̇+GR(q)],

(17)

where,KP1, . . . ,KPl,KV 1, . . . ,KV l are some posi-
tive reals.

Roughly speaking, restricted system (16) represents in
our particular case the Acrobot model to be controlled
by an controlleruR according to a required movement
of the restricted system. Whereas controlleruC must
fulfil equation (17) in order that the original system (3),
in our particular case the four-link, is restricted into the
Acrobot model represented by (16) according to the flat
holonomic VHCs (9).
This results were demonstrated on example of the

four-link model, i.e. the walking robot with four de-
gree of freedom with three actuators and one degree of
underactuation. In this particular example, two VHCs
were defined to control legs bending and straightening.
The remaining restricted system in the example is com-
posed from underactuated two legged robot equivalent
to the Acrobot, i.e. two degree of freedom with one
degree of underactuation as only the angle between the
stance leg and the ground is not actuated. By virtue of
the VHCs approach, the restricted system,i.e. the two-
legged robot must be controlled according to desired
motion whereas the legs bending and straightening is
controlled via VHCs.

3.2 Impact Invariance of the Collocated VHCs
The impact invariant VHCs are crucial in application

of a robot walking in order that the walking can be
considered as a periodic orbit,i.e. after the impact at
the end of the step the walking-like mechanism has the
same configuration and velocities as at the beginning of
the step. In [̌Celikovský and Anderle, 2016a], special
conditions for VHCs to be impact invariant for a gen-
eral n-link system were presented. These conditions
are crucial for the cyclic hybrid walking trajectory de-
sign provided the cyclic walking trajectory design for
the restricted system has already been developed.
During the impact the angular configuration of the

walking robot does not change, however, the angular
velocities change impulsively, i.e. the angular veloc-
ity “just before” the impacṫq− changes instantaneously
into the angular velocity “just after” the impactq̇+.
This change can be mathematically expressed as mul-
tiplication by the so-calledimpact matrix Φ(q−) (7).
Entries of the impact matrix depend nonlinearly on the
mechanical system configurationq− “just before” the
impact moment. Moreover, due to the switching of
legs at the end of the step, the relabeling of angles is
necessary, which results into a simple map ofq− into
configuration variables “just after” the impactq+, this
mapping is denoted asR(q−) (6). The crucial equation
to be fulfilled for the cyclic walking trajectory design
of the restricted system as well as for impact invariant
VHCs design is as follows

q̇(0) = q̇(T+) = Φ(q−)q̇(T−). (18)

The design of impact invariant VHCs in [Čelikovský
and Anderle, 2016a] was done for generaln-link walk-
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ing robot such that the restricted system consists of two
legs. Therefore,l = n − 2 impact invariant VHCs in
the following special form were defined and studied

ϕi := qi+2 − φi+2(q2), i = 1, . . . , n− 2, (19)

whereφ3, . . . , φn are suitable sufficiently smooth func-
tions to be defined. Their design was aimed at their
initial and final derivatives∂φ3,...,n

∂q2
(q+2 ),

∂φ3,...,n

∂q2
(q−2 )

to be in a relation given by impact matrixΦ(q−) (7).
To briefly present the idea of impact invariant VHCs
design, introduce the following block notation for the
impact matrixΦ(q−)

Φ(q−) =

[

Φ11(q−) Φ12(q−)
Φ21(q−) Φ22(q−)

]

, (20)

where

Φ11(q−) =

[

φ11 φ12

φ21 φ22

]

, Φ12(q−) =

[

φ13 . . . φ1n

φ23 . . . φ2n

]

,

Φ21(q−) =











φ31 φ32

φ41 φ42

...
...

φn1 φn2











, Φ22 =







φ33(q
−) . . . φ3n(q

−)
...

...
...

φn3(q
−) . . . φnn(q

−)






.

In [Čelikovský and Anderle, 2016a] it was shown that
for impact invariant VHCs (19) the crucial property (7)
holds if and only if the following equations hold









∂φ3

∂q2
(q+2 )
...

∂φn

∂q2
(q+2 )









=









φ31(q
−)

φ21(q−)

...
φn1(q

−)
φ21(q−)









,









∂φ3

∂q2
(q−2 )
...

∂φn

∂q2
(q−2 )









=





















0 φ31(q
−)

φ21(q−)

...
...

0 φn1(q
−)

φ21(q−)











Φ12 − Φ22











−1

×









φ32(q
−)− φ31(q

−)
φ21(q−)φ22(q

−)
...

φn2(q
−)− φn1(q

−)
φ21(q−)φ22(q

−)









,

(21)
providedφ21(q

−) 6= 0 and the above inverse exists at
q−. Roughly speaking, derivatives of VHCs according
(21) are in a relation given by the impact matrix. As
a result of this, corresponding angular velocities at the
end of the step after relabeling are equal to angular ve-
locities at the beginning of the step. And by virtue of
this, their movement correspond to the periodic orbit.

4 Underactuated Walking Hybrid Stability
The stability analysis of the underactuated robot

walking controlled via the VHCs is done here using
a method of Poincaré sections. The Poincaré method
is a numerical method based on a movement evaluation
of a particular robot and, therefore, it is not possible to
apply the Poincaré method on a generaln-link walking
robot in order to test the stability in general. By virtue
of this, the representative example from [Čelikovský
and Anderle, 2016b], [̌Celikovský and Anderle, 2016a]
being the so-called four-link will be used here for sta-
bility analysis of its walking controlled using the com-
bination of restricted system control and VHCs via the
Poincaré method. The four-link was described at the
end of the Section 2 and it is depicted in the Fig. 1.

4.1 Method of Poincaŕe Sections
The Poincaré sections method for stability determina-

tion of a biped walking is frequently used in robotics,
e.g. in [Wang and Chevallereau, 2011], [Westervelt
et al., 2007], Chapter 4. This method will be used here
to analyze hybrid stability of the periodic walking-like
trajectories described in the previous section.
Before going into the details of the method applica-

tion, let us discuss the specifics of the designed hybrid
periodic trajectory to be analyzed. The walking-like
movement designed by the method of the collocated
VHCs is the result of the controller that uses target sys-
tem and a specially designed open loop control compo-
nent. This open loop control component applied to the
target system provides hybrid cyclic walking-like tar-
get trajectory. Then, the same open loop control com-
ponent is feeded into the robot model to be controlled
and it is supplemented with the carefully designed feed-
back component ensuring that the robot model tracks
that target system. Such a design during the continu-
ous time swing phase is based on imposing suitable se-
lected collocated VHCs and then controlling the resid-
ual restricted system using the method described in the
next subsection. In such a way a stable periodic hybrid
trajectory may be imposed in the walking robot model.
Unfortunately, the exponential convergence can be

proved only during the continuous time phase, called
also as the swing phase. To prove overall stability, in-
cluding the impulsive effects of the impacts, one need
to compute numerically the joint effect of the continu-
ous time and the impact phases on the small deviations
from ideal target trajectory. This is done by the evalu-
ating the mentioned Poincare sections map.
Note, that the designed periodic trajectory is a result of

the tracking of the target system and therefore the robot
model is, in fact, forced both by open loop component
and the state of that target system,i.e. the robot model
with controller is a non autonomous system. Due to
such a design, one can expect not only the orbital sta-
bility, but actually exponentially stable convergence of
the robot model trajectory to the target periodic trajec-



CYBERNETICS AND PHYSICS, VOL. 6, NO. 2 53

tory, including the time dependence. In such a way,
instead of the expectable 7 eigenvalues of the linear ap-
proximation of the Poincare map inside the unit circle
of the complex plane, one will get 8 such eigenvalues.

As a matter of fact, the terminology “Poincare sec-
tions map” is still acceptable as the map described bel-
low is the standard Poincare sections map for the ex-
tended autonomous system obtained by augmenting the
state by the another component representing the time.
The augmented component is then hybrid reset at the
end of the each step to zero which is possible due to
the periodicity of the time dependency of the controlled
robot model right hand side. Then, as it can be seen
bellow, the appropriate Poincare section is defined by
the simple condition that the augmented state compo-
nent is equal toT/2, whereT is the step duration,i.e.
also the period of the investigated periodic trajectory.
Finally, note that along the mentioned augmented 9-
dimensional trajectory the hybrid matrix of the approx-
imate linearization of the dependence on initial condi-
tions would posses the additional 9th eigenvalue equal
to 1. That is thanks to the mentioned reset of the aug-
mented component. Summarizing, the augmented sys-
tem will be 9 dimensional and its Poincare sections
map linear approximation will have 8 eigenvalues in-
side the unit disk of the complex plane.

The application of the method of Poincaré sections is
as follows. Roughly speaking, a solutionφ(t, x) of
a system is sampled according to usually event-based
or time-based rule and then the stability of an equilib-
rium point of the sampled system is evaluated. The
event-based or time-based rule is in the literature usu-
ally called Poincaré sectionS, which is determined by
crossing a plane being transversal to a trajectory of the
system solutionφ(t, x). The correspondence between
two subsequent crossing ofS by the trajectory of the
system solutionφ(t, x) is called in the literature as the
Poincaré return mapP , P : S → S. In another words,
the Poincaré return mapP is a mapping from an initial
point x ∈ S to the intersection of the surfaceS with
the solutionφ(t, x), i.e.P(x) := φ(t, x).

In our case, the Poincaré section is defined at the mid-
dle of the step timeT2 , whereT is total step time.
The Poincaré return map is defined by the Poincaré
sectionS and it represents the evolution of four-link
swing phase from this point until the end of the step
through the impact phase including change of legs and
4-link swing phase in the next step until it intersects the
Poincaré sectionS in the middle of the next step.

A point x∗ ∈ S is called as a fixed point of the
Poincaré map ifP(x∗) = x∗. The known cyclic mo-
tion of coordinatesq, q̇ gives a unique fixed pointx∗ =
(q1,2,3,4(

T
2 ), q̇1,2,3,4(

T
2 ). By definition, the Poincaré

return map

x[k + 1] = P(x[k]) (22)

is a discrete-time system on the Poincaré sectionS. De-
fine

δxz [k] = xz [k]− x∗ (23)

the Poincaré return map linearized about the fixed-
pointx∗, then it gives rise to a linearized system

δxz [k + 1] = Azδxz [k], (24)

where the(8 × 8) square matrixAz is the Jacobian of
the Poincaré map and it is computed as follows

Az = [Az
1 A

z
2 A

z
3 Az

4 A
z
5 A

z
6 A

z
7 Az

8]8×8 , (25)

where

Az
i =

P (x∗ +∆xz
i )− P (x∗ −∆xz

i )

2∆xz
i

, i = 1, . . . , 8,

(26)
and ∆xz

i = ∆qi for i = 1, 2, 3, 4 and ∆xz
i =

∆q̇i for i = 5, 6, 7, 8. The fixed-pointx∗ of the
Poincaré return map is locally exponentially stable if,
and only if, the eigenvalues ofAz lie inside the unit cir-
cle. For more details see e.g. [Westervelt et al., 2007].
The calculation of the matrixAz requires sixteen eval-

uations of the Poincaré return mapP , two evaluations
for each coordinate. Each evaluation of the Poincaré
return map is composed of the integration of the swing
phase fromt = T

2 to the collision with the ground, the
calculation of the influence of the impact on angular
velocities including their relabeling due to switching
the swing and the stance leg and relabeling of angular
positions and the integration of the swing phase until
t = T

2 .

4.2 Simulations
The evaluation of the Poincaré stability test for the

4-link together with simulation of the 4-link walking
during approximately 150 steps was done by virtue of
a restricted system control and application of impact
invariant VHCs. The restricted system consists of the
underactuated angle in the pivot point and the hip an-
gle, i.e. q1 andq2 according to Figure 1, respectively.
As a result of this, the restricted system is equivalent
to two legged walking robot called as the Acrobot and
therefore the developed method to its control can be
adapted and used to control the restricted system.
The knee angles of the four-link are controlled via

VHCs. The special form of two impact invariant VHCs
were defined according equation (19) such that the con-
ditions on initial and final derivatives given by equation
(21) were fulfilled. Moreover, VHCs include the move-
ment of the swing and the stance leg during the step
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such that the swing leg do not hit the ground some-
where else then it is proposed, i.e. the VHCs include
bending of the swing leg and straightening of the stance
leg during the step as well. According to (19) the VHCs
can be defined as follows

q̄3 = q3 − φ3(q2), ˙̄q3 = q̇3 −
∂φ3(q2)

∂q2
q̇2,

q̄4 = q4 − φ4(q2), ˙̄q4 = q̇4 −
∂φ4(q2)

∂q2
q̇2.

(27)

Using the partial feedback linearization method orig-
inally developed in [̌Celikovský et al., 2008] the re-
stricted system dynamics (16) is transformed into par-
tially linear form and using a feedback regulator the
restricted system in the partial linear form is controlled
along a cyclic walking-like reference trajectory from
[Anderle andČelikovský, 2010]. For the purpose of
uniform labeling of coordinates let us to relabel the co-
ordinatesq1 andq2 as follows

q̄1 = q1, ˙̄q1 = q̇1, q̄2 = q2, ˙̄q2 = q̇2. (28)

The partial exact feedback linearization method is
based on a system transformation into a new system
of coordinates that displays linear dependence between
some auxiliary output and new (virtual) input. In the
case of the Acrobot there are two independent func-
tions with relative degree3 which transform the origi-
nal system into the desired partial linearized form with
one dimensional zero dynamics [Olfati-Saber, 2002],
[Grizzle et al., 2005], namely

σ =
∂L

∂ ˙̄q1
, p = q̄1 +

∫ q̄2

0

d̄11(s)
−1d̄12(s)ds, (29)

which can also be used together with the following
transformation defined in [Čelikovský et al., 2008]

ξ = T (q̄, ˙̄q) : ξ1 = p, ξ2 = σ, ξ3 = σ̇, ξ4 = σ̈
(30)

to transform the nonlinear dynamics of the restricted
system (16) into the partial linear form. Therefore,
transformation (30) together with the propertyṗ =
d̄11(q̄2)

−1σ results in the restricted system dynamics
in the following partial exact linearized form

ξ̇1 = d̄11(q̄2)
−1ξ2, ξ̇2 = ξ3, ξ̇3 = ξ4,

ξ̇4 = α(q̄, ˙̄q)τ2 + β(q̄, ˙̄q) = w (31)

with the new coordinatesξ and the new inputw being
well defined whereverα(q̄, ˙̄q)−1 6= 0. Assume, the fol-
lowing reference system is used to generate a reference
trajectory via open loop controlwr

ξ̇r1 = d̄11(q̄
r
2)

−1ξr2 , ξ̇
r
2 = ξr3 , ξ̇

r
3 = ξr4 , ξ̇

r
4 = wr. (32)

To obtain the exponentially stable state feedback, sub-
tract the original system (31) and the reference one (32)
and after application of Taylor expansion the following
error dynamics system to be stabilized can be obtained

ė1 = µ1(t)e1 + µ2(t)e2 + µ3(t)e3 + o(e),

ė2 = e3, ė3 = e4, ė4 = w − wr,
(33)

wheree := ξ−ξr. Definitions of functionsµ1,2,3(t) are
given in [Čelikovský et al., 2008], [̌Celikovský et al.,
2013]. The cyclic walking reference trajectory to be
tracked for the restricted system is generated by the
reference system (32) in a way developed in [Anderle
andČelikovský, 2010], i.e. the reference inputwr has
the formwr = a + b t, a, b ∈ R, see [Anderle and
Čelikovský, 2010] for details. The feedback controller
w to track the restricted system along the cyclic walk-
ing reference trajectory from [Čelikovský et al., 2013]
as follows

w = K1
e1 − µ3e2

µ1µ3 − µ̇3 + µ2
+K2e2+K3e3+K4e4 (34)

was used, for details see [Čelikovský et al., 2013].
The simulations of the above described controller

were performed. The reference trajectory tracking dur-
ing more than 150 steps is demonstrated by the phase
plane plots in Figs. 2-5. As usual, the phase plane plots
show trajectories by plotting velocities against posi-
tions. Red circles depict the initial conditions. One can
easily see the convergence to the cyclic reference an-
gular positions and velocities visible as the thick lines.
The thin lines represent the transition to these stable
limit cycles. The animations on the last figure then
nicely demonstrates convergence to the pre-designed
walking-like trajectory. Here, dotted line is the target
one, the bold line is the actual four-link movement.
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Figure 2. Phase-plane plots for coordinatesq1.
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Figure 3. Phase-plane plots for coordinatesq2.
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Figure 4. Phase-plane plots for coordinatesq3.
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Figure 5. Phase-plane plots for coordinatesq4.

5 Conclusion
The exponential stability of periodic gaits of the four

link walking-like mechanical system was demonstrated
by numerical computations of the Poincaré map. Both
the walking-like gait and its tracking feedback were ob-
tained earlier using the combination of the collocated
virtual holonomic constraints concept and the cyclic
property of the unactuated variable. The numerical sta-
bility test obtained here can be easily adapted to check
stability of other hybrid cyclic trajectories as well.
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Dolinský, K. andČelikovský, S. (2017). Application
of the Method of Maximum Likelihood to Identifi-
cation of Bipedal Walking Robots.IEEE Transac-
tions on Control Systems Technology, in print, DOI
10.1109/TCST.2017.2709277.

Freidovich, L., Mettin, U., Shiriaev, A., and Spong, M.
(2009). A Passive 2-DOF Walker: Hunting for Gaits
Using Virtual Holonomic Constraints.IEEE Trans-
actions on Robotics, 25(5):1202–1208.

Greiner, W. (2003). Classical Mechanics: System
of Particles and Hamiltonian Dynamics. Berlin:
Springer Verlag.

Grizzle, J., Chevalereau, C., Sinnet, R., and Ames, A.
(2014). Models, feedback control and open prob-
lems of 3D bipedal robtic walking. Automatica,
50(8):1955–1988.

Grizzle, J., Moog, C., and Chevallereau, C. (2005).
Nonlinear control of mechanical systems with an un-
actuated cyclic variable.IEEE Transactions on Auto-
matic Control, 50(5):559–576.

Keller, J. (1986). Impact with friction.Transaction of
the ASME, Journal of Applied Mechanics, 53:1–4.

Kozlov, V. V. (2015). The dynamics of systems with
servoconstraints. I.Regular and Chaotic Dynamics,
20(3):205–224.

La Herra, P., Shiriaev, A., Freidovich, L., Mettin, U.,
and Gusev, S. (2013). Stable Walking Gaits for a
Three-Link Planar Biped Robot With One Actuator.
IEEE Transactions on Robotics, 29(3):589–601.

Maggiori, M. and Consolini, L. (2013). Virtual
Holonomic Constraints for Euler-Lagrange Systems.
IEEE Trans. on Automatic Control, 58(4):181–185.

Majumdar, A., Ahmadi, A., and Tedrake, R. (2013).
Control design along trajectories with sums of
squares programming. InProceedings of the 2013
IEEE International Conference on Robotics and Au-
tomation (ICRA), pages 4054–4061, Karlsruhe, Ger-
many.

McGeer, T. (1990). Passive dynamic walking.Interna-
tional Journal of Robotics Research, 2(2):62–82.

Mohammadi, A., Maggiore, M., and Consolini, L.
(2013). When is a Lagrangian System with vir-
tual holonomic constraints Lagrangian. InProc. of
the 9th IFAC Symposium NOLCOS, pages 512–517,
Toulouse, France.

Olfati-Saber, R. (2002). Normal forms for underac-
tuated mechanical systems with symmetry.IEEE
Transactions on Automatic Control, 47(2):305–308.

Pchelkin, S., Shiriaev, A., Freidovich, L., Mettin, U.,
Gusev, S., Kwon, W., and Paramonov, L. (2015). A
dynamic human motion: coordination analysis.Bio-
logical Cybernetics, 109(1):47–62.

Shiriaev, A., L. Freidovich, L., and Spong, M. (2014).
Controlled invariants and trajectory planning for un-
deractuated mechanical systems.IEEE Trans. on Au-
tomatic Control, 59(4):2555–2561.

Shiriaev, A., Perram, J., and Canudas-de Wit, C.
(2005). Constructive tool for orbital stabilization
of underactuated nonlinear systems: Virtual con-
straints approach.IEEE Trans. on Automatic Control,
50(8):1164–1176.

Shiriaev, A., Robertsson, A., Perram, J., and Sand-
berg, A. (2006). Periodic motion planning for vir-
tually constrained Euler-Lagrange systems.Systems
and Control Letters, 55(11):900–907.

Song, G. and Zefran, M. (2006a). Stabilization of hy-
brid periodic orbits with application to bipedal walk-
ing. In Proc. of the 2006 American Control Confer-
ence, pages 2504–2509, Minneapolis,Minnesota.

Song, G. and Zefran, M. (2006b). Underactuated dy-
namic three-dimensional bipedal walking. InPro-
ceedings of the 2006 IEEE International Conference
on Robotics and Automation (ICRA), pages 854–859,
Orlando, Florida.

Spong, M. and Bullo, F. (2005). Controlled Symme-
tries and passive walking.IEEE Trans. on Automatic
Control, 50(7):1025–1031.

Wang, T. and Chevallereau, C. (2011). Stability anal-
ysis and time-varying walking control for an under-
actuated planar biped robot. Robotics and Au-
tonomous Systems, 59(6):444–456.

Westervelt, E., Grizzle, J., Chevallereau, C., Choi, J.,
and Morris, B. (2007).Feedback Control of Dynamic
Bipedal Robot Locomotion. CRC Press, Berlin.


