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Abstract
The Method of Wandering Trajectories is

applied to the study of the asymptotic response
of pseudoelastic oscillators under harmonic
forcing to build behavior charts both in initial
displacement-initial velocity plane as well as in
the excitation frequency-amplitude plane. This
provides an overall characterization of the non-
regular responses, that confirms that the
occurence of chaotic responses is a robust
outcome for the system.
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1 Introduction

Previous studies on the nonlinear dynamics
of pseudoelastic oscillators showed the
occurrence of chaotic responses in some ranges
of the system parameters (Bernardini and Rega
2005, 2007). In order to understand whether
nonregular responses only occur in isolated
zones or are actually robust outcomes, the
analyses need to be carried out through some
synthetic measure of nonregularity that allow
for systematic investigations in meaningful
parameter spaces.

Whereas the numerical characterization of
chaos in smooth dynamical systems is often

carried out via the computation of Lyapunov
exponents, in the present case the computation
of such exponents, following, for example,
(Müller 1995), does not seem to be a
convenient strategy.

The attention has thus been focused on the
simpler direct numerical tool represented by the
method of wandering trajectories (Awrejcewicz
et al. 2004). This method has been successfully
applied in the literature to estimate regular and
chaotic responses for non-smooth mechanical
oscillators with up to two degrees of freedom
(Awrejcewicz et al. 2005) and has been
validated and calibrated in (Bernardini and
Rega 2005).

The purpose of this paper is to present some
results on the overall characterization of the
chaotic response of pseudoelastic oscillators.

2 Description of the system

The system under consideration is a simple
oscillator where the restoring force is provided
by a device with pseudoelastic behavior. The
model used for the restoring force has been
introduced in (Bernardini and Rega 2005) and
fits into the family of models proposed in
(Bernardini and Pence 2002) based on two
constitutive functions: the free energy and the
dissipation function.



The evolution of the system is described,
besides by the displacement, velocity and
temperature (x,v,ϑ), also by the martensitic
phase fraction ?∈ [0,1]. The typical
pseudoelastic loops occur as a consequence of
the Forward (FwT) and Reverse (RvT)
Transformation, respectively associated to
increasing and decreasing of ?.

The nondimensional dynamics of the
oscillator is modeled by the following system of
four ordinary differential equations in the
variables x:=[x,v,?, ϑ] (for details see
(Bernardini and Rega 2005))
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where H and ?  are constitutive functions that
take different expressions depending on the
kind of transformation (Bernardini and Rega
2007) as well as on the value ?0 of the
martensite fraction at the end of the last
transformation process. The vector field (1) can
thus take three different forms depending on the
expressions of H and ? . However, once
activated, each kind of behavior is smooth. The
time evolution of ?0 is almost everywhere
constant as it jumps from a value to another
whenever there is a switch between different
kinds of behavior.

The parameters λ, L,J,h represent
respectively: the length of the pseudoelastic
plateaus, the latent heat of transformation, the
linear temperature dependence of the
transformation forces and the coefficient of
convective heat exchange with the
environenment. Moreover s=sgn(x) whereas
ζ, γ, α ? denote respectively the viscous damping
and the excitation amplitude and frequency.

It is noted that not every 5-ple of initial
conditions (i.c.) represents a physically
admissible state of the system. A procedure to
determine admissible i.c. is described in
(Bernardini and Rega 2007).

3 The method of the wandering
trajectories

The Method of Wandering Trajectories
(MWT) is a tool for the characterization of the
asymptotic behavior of dynamical systems
under periodic forcing excitation. The basic
idea is very simple: a motion is classified as
non-regular if the separation with a neighboring
trajectory overcomes a given threshold. The key
issue of the method is thus the proper definition
of the perturbations and of the threshold.

Let the fiduciary trajectory to be
characterized be denoted as u(t) with initial
condition u(0)=u0. For any other trajectory

)(~ tu  such that 0
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separations are defined as follows
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The MWT proceeds as follows:
• integrate u(t) over T:=[0,T] and compute,

over the subinterval T1:=[t1,T] where
transients expired, for each component, the
vibration amplitude of the fiduciary
trajectory, defined as follows
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this yields a vector A measuring the scale of
the motion;

• another trajectory %( )tu  is defined by the

initial condition %
0u  derived from u0 by

perturbing each component proportionally to
the corresponding vibration amplitude
h0:=εA;

• define the normalized separations relative to
the vibration amplitudes
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Provided they correspond to an admissible
state of the system, the initial values αi(0) are
thus equal to the chosen parameter ε.

If the motion is regular the normalized
separations either take values of the same order
of magnitude as ε or decay to zero. By contrast,
non-regular motions may lead, after the
transients, to normalized separations much



higher than ε; trajectories initiated from two
nearby points on a chaotic attractor separate
away from each other until the separation levels
off at the size of the attractor.

The main assumption of the MWT is that,
with some preliminary knowledge of the system
dynamics, it is possible to determine a threshold
level α  for the normalized separation that
characterizes the occurrence of non-regular
motions. In particular, a trajectory u(t) is
characterized as non-regular if, at some 1t T∈ ,
the normalized separation with respect to a
trajectory with initial separation h0=εA, exceeds
the chosen threshold

( )i tα α> .               (5)
This test certainly detects the sensitivity to

initial conditions of the trajectory. However this
is only a necessary but not sufficient condition
for the motion to be chaotic. In facts, the
sensitivity to initial conditions alone only
indicates that the perturbation may have taken
the trajectory outside the basin of attraction of
the attractor. A chaotic motion, besides being
sensitive to initial conditions, is also wandering
in the sense that it attempts to fill a bounded
region K of the phase space (for any K∈q
there is a time t such that u(t)=q). Therefore the
MWT tends to overestimate the number of non-
regular trajectories, which turns out to be in
favour of safety from an engineering viewpoint.

4 Comparison with bifurcation
diagrams

The constitutive model for the restoring
force covers a great variety of situations. The
following set of parameters, as in (Bernardini
and Rega 2005), is considered as reference and
in the following is referred to as RMP
?=8.125, J=3.1742, L=0.124,
q1=0.98, q2=1.2, q3=1.0246,
h=0.08, a=0.03 ?=0.03

These parameters correspond to a typical
pseudoelastic cycle in a mildly convective
environment. For the physical meaning of the
parameters see (Bernardini and Rega 2005).

To obtain an overall picture of the system
behavior, a constant excitation amplitude (?=1)
bifurcation diagram with the frequency a as
control parameter has been computed.
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Fig. 1. Bifurcation diagram and normalized
separations.

The diagram is obtained by decreasing
frequency with variable initial conditions taken
from the adjacent computation point, and the
region a∈(0.15,0.3) is reported in Figure 1.
In the same frequency interval a systematic
application of the MWT has been done for
comparison. In particular, for each frequency,
the response has been computed for T=200
periods while checking the normalized
separations with respect to trajectories
perturbed by ε=0.01 on T1=100 periods.
On the same figure a curve depicting the results
of the MWT is superposed. For each frequency
the curve (to be read with respect to the right
vertical axis) shows the maximum value over T1

of the normalized separation of the
displacement. It turns out that, whenever the
trajectories are periodic, the separation remains
practically 0. On the contrary, when the
separation overcomes values of about 0.1, a
slightly chaotic behavior is already observed.
Values of the separation above 0.3 are
definitely associated with consolidated chaos.



5 Overall characterization of the non-
regular solutions and effect of the
hysteresis

The robustness of the chaotic response within
the overall behavior of the system can now be
investigated by computing behavior charts in
which some control parameters are varied and
the MWT is systematically applied to
distinguish between regular and nonregular
responses. A natural choice for the control
parameters is the pair excitation frequency-
amplitude at fixed initial conditions and
material parameters.
In particular the analysis has been carried out
for the above mentioned set of material
parameters RMP as well for another set, called
MP1, obtained from RMP by decreasing q2

from 1.2 to 1.02. The parameters MP1
correspond to a pseudoelastic loop with lower
hysteresis with respect to RMP. The
comparison between the two provide
information about the effect of the hysteresis on
the chaotic response.

According to the previous analyses the
threshold level for the normalized separations
has been chosen as α =0.3. Integration of the
trajectories has been carried out for 200
excitation periods, while restricting the interval
T1 to the last 100 periods. Due to the
complexity of the trajectories occurring in some
parameter regions, the application of the
method requires a rather fine numerical
integration. After calibration of various explicit
and implicit integration algorithms, a
reasonable compromise between accuracy and
computational time has been reached by using a
standard fourth-order Runge-Kutta algorithm
with 2000 steps per period.

Preliminarily, an investigation has been
carried out in the initial conditions domain.
More specifically, the MWT has been first
applied to build a section of a kind of basin of
attraction of chaotic responses in the plane of
initial displacement x0 and velocity v0. Initial
conditions x0∈[-1, 1] and v0∈[-1, 1] have been
considered together with ξ= ξ 0=0 and ϑ= ϑ
0=1. These values can be shown to be all

admissible and correspond to the device in
elastic, purely austenitic, phase.
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Fig. 2. Regions of nonregular response in
initial conditions plane (white: regular, black
dot: non-regular).

Two sample domains corresponding to the
excitation amplitude γ=1 and different
frequencies α =0.245 and α=0.21 are shown in
Figure 2 (with RMP). At both frequencies,
nonregular responses occur for various initial
conditions. Analogous responses occur at the
other frequencies where chaos is found. From
consideration of such analyses, the pair (x0,
v0)=(-1.0,-1.0) has been selected as fixed initial
condition, together with ξ 0=0 and ϑ0=1, for the
subsequent investigations.

The frequency-amplitude behavior chart for
the basic set of parameters RMP is shown in
Figure 3.
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Fig. 3 Behavior chart in excitation frequency-
amplitude plane for RMP (white: regular, black dot:
non-regular).



For γ=1, two clearly separated regions of
non-regular motion are found, a compact one on
the right, a more scattered one on the left. They
are likely to correspond with the two kinds of
chaotic motions highlighted in (Bernardini and
Rega 2005) by bifurcation diagrams. The
presence of scattered points, especially at the
higher excitation amplitudes, can be eliminated
by a finer numerical integration.

The same chart has then been computed with
MP1 material parameters (Figure 4).
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Fig. 4. Behavior chart in excitation frequency-
amplitude plane for MP1 (white: regular,
black dot: non-regular).

It turns out, as expected, that decreasing
hysteresis leads to a significant increase of the
size of the regions of irregular motion, with the
intermediate region tending to cluster in nearly
vertical stripes at lower frequencies.
In-depth understanding of the kind of non-
regular motion with respect to the neighbouring
regular one would require complementing the
chart with a number of bifurcation diagrams
with frequency as control parameter (this is left
for future investigations). Overall, the charts
show that the chaotic motions are robust and
persist in significant regions of the excitation
amplitude and frequency plane.

6 Conclusions

The Method of Wandering Trajectories has
been shown to be effective in detecting the
sensitivity to initial conditions of the orbits of a
thermomechanically based pseudoelastic
oscillator. The occurrence of chaotic reponses
has been characterized via excitation frequency-
amplitude charts for two sets of material
parameters. The results confirm that, although
an increase of the hysteresis in the system tends
to reduce chaotic motions, even in the reference
case the occurrence of chaos is a robust
outcome taking place in large regions of the
frequency-amplitude plane.
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