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Abstract. A problem of constructing stable recursive algorithms to be used within a broad 
class of identification and learning problems is considered. An approach is presented 
leading to obtaining strongly consistent algorithms. Both cases of multi and single in-
put/multi and single output (MIMO, MISO, SISO) linear stochastic dynamic systems are 
involved. Thus obtained, the recursive algorithms do not involve inversion of the per-
formance index Hessian and are stable to sampled data, in contrast to conventional recur-
sive schemes. Simulation examples are presented, which confirm practical efficiency of 
the approach. Copyright © 2007 IFAC 
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1. PROBLEM STATEMENT AND MAIN 
RESULTS 

 
Consider a strictly causal and asymptotically stable 
multi input/multi output linear stochastic system with 
a Ynn ×Φ -dimensional (generalized) input process 

Φ(t) and a Yn -dimensional output process Y(t), de-
scribed by the following input/output relationship 

 

)()()( * tVttY T +Φ= θ                     (1) 
 

In (1), *θ  is a θn -dimensional ( Φ= nnθ ) vector of 
system parameters subject to determination by use 
current observations of Y(t) and Φ(t); V(t) is a Yn -
dimensional random process considered as unob-
servable external disturbances, being the stationary 
random process having a rational spectral density 
and described by the relationship 

 
)()()( 1 tWqHtV WY

−= ,                  (2) 
 

where W(t) is a Yn -dimensional stationary white-

noise random process, )( 1−qHWY  is the rational 

matrix transfer function of an asymptotically stable 
and invertible filter, and 1−q  is the one step back-
ward shift operator. 
 
System (1) model will be searched for as 

 

θθ )(),(ˆ ttY TΦ= .                      (3) 
 

By virtue of (3), system (1) output process may be 
represented in the form 

 

)()()( tttY T E+Φ= θ                     (4) 
 

where )(tE  is the equation error (Ljung, 1999, 
2002). 
 
Within such a system description, it is assumed that 
under 0)( 1 ≡−qHWY , there is unique element in the 
model set of form (4), having the same input/output 
description as system (3). Such a condition is equiva-

lent to the following inequality 0)()( 00 >
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ΦΦ tt TM  

where )()(0 tt Φ≡Φ  in (1) as 0)( 1 ≡−qHWY . Here 



 
and further, { }M  stands for the mathematical ex-
pectation. 
 

Provided that the filter )( 1−qHWY  in (2) is com-
pletely unknown, the only way to obtain a consistent 
estimate of the parameter vector *θ  of system (1) is 
using the instrumental variable technique. Within the 
framework, the most general approach is represented 
by the extended overdetermined instrumental vari-
able (OIV) method developed by Söderström and 
Stoica (1989, 2002). 
 

Generically, the parameter vector *θ  estimate corre-
sponding to the extended OIV method may be repre-
sented in the form 
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where Z(t) is the YZ nn × -dimensional instrumental 
variables matrix, θdim≥Zn , with both )(tY  and 

),(ˆ θtY  being transformed by an asymptotically sta-

ble filter )( 1−qF . In (5), a conventional notation 

QXXX T
Q =2  is used, where Q is a positively de-

fined weight matrix. 
 
To derive system (1) identification algorithm the 
following formal representation will be considered 

 

)()()1()()( ttttt βθαθ
r

Φ+−= ,             (6) 
 

where )(tα  is some scalar coefficient, and )(tβ
r

 is 

some vector-valued coefficient, Ynt =)(dimβ
r

. 
These coefficients are to be determined by a condi-
tion suitable within the identification problem state-
ment. Such a condition is based on the extended OIV 
criterion considered above. Namely, substitution of 
(6) into (5) and taking minimum over )(tα  and )(tβ

r
 

lead to the following criterion 
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which determines the desired coefficients α(t) и and 

)(tβ
r

. 
 
Thus, representation (6) and criterion (7) imply the 
following recursive identification algorithm 

 
( ))1()()()()1()( −−Γ+−= ttRtSttt θθθ ,     (8) 

)()()( tQLtGtS T= ,                   (9a) 

)()()( tQGtGtR T= ,                   (9b) 
+−= )1()( tGtG  
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where the step Г(t) is determined by the expression 
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and, in (10), the ratio 
0
0  is considered as 0. Formu-

lae (8)-(10) may de obtained by straightforward cal-
culations. 
 
Thus, the algorithm obtained does not utilizes inver-
sion of the sample identification criterion Hessian, 
R(t), what reduces sensitivity of the current estimates 
to variation of the matrix R(t) condition number. 
 
Algorithm (8)-(10) obtained is strongly consistent 
(i.e. for any initial approximation )0(θ , the recursive 

sequence of estimates { })(tθ  determined by formulae 

(8) to (10) converges with probability 1 to *θ  from 
(1) as ∞→t ) as { }( ) θntRrank =)(M .  The former 
condition is known to be valid (generically) for a 
broad class of systems (1) and under an appropriate 
choice of the instruments Z(t) and the filter )( 1−qF  
(Söderström and Stoica, 1989, 2002). The proof of 
algorithm (8)-(10) consistency is omitted here due to 
abstract size limitation. 
 
 

2. EXAMPLES 
 
Below, some examples are presented, which demon-
strates convergence properties of the algorithm ob-
tained. Let, for sake of simplicity, both input and 



 
output processes be scalar-valued ones, u(t) and y(t) 
respectively. 
 
Example 1. Let the system be of the form 
 

−−−−−= )2(561.0)1(41.1)( tytyty  
−−+−+−− )5(002.0)4(021.0)3(019.0 tytyty

)()2(72.0)1(1.0 tvtutu +−−−− , 
 
where 
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num ω
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−
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( ) 3211 049.0307.018.0 −−−− +−= qqqqU num , 

( ) −+−= −−− 211 548.0468.11 qqqU den  
43 002.0061.0 −− +− qq , 

 
and )(tiω  is the white-noise zero-mean and unit 
variance Gaussian process, 
 

( )
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1*
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t

qD

qCtv nω
−

−
= , 

( ) 3211* 015.0713.0219.0 −−−− +−= qqqqC , 

( ) ++−−= −−−− 3211* 018.0059.0679.01 qqqqD  
5544 10491.910944.5 −−−− ⋅−⋅+ qq , 

 
)(tnω  is the white-noise zero-mean Gaussian proc-

ess, with the standard deviation being equal to 0.05. 
To form the instrumental variables vector, z(t), the 
delayed inputs have been chosen, 
( ))(,),1( nztutu −− K , with 11=nz . Figure 1 repre-
sents behavior of the current identification error 

norm squares ( ) ( )**2 )()()( θθθθη −−= ttt
T

 corre-
sponding to algorithm (8)-(10) (curve Olct, solid 
line) and recursive extended overdetermined instru-
mental variables algorithm (curve Roivt, dotted line), 
obtained following the methodology of Friedlander 
(1984). Within the example, 1)( 1 ≡−qF  and matrix 
Q has been used as a current estimate of the inverse 
covariance matrix of the instrumental variable vec-

tor, i.e. ( )⎜
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Fig. 1 

 
The condition number of the matrix )(tR  from (9), 

corresponding to such a system is of order 210 . 
 
Example 2. Consider a model of the same structure 
as that of example 1 and described as follows 
 

+−+−−= )2(12.0)1(48.0)( tytyty  
−−−−−−+ )5(001.0)4(02.0)3(055.0 tytyty  

)()2(213.0)1(504.1 tvtutu +−+−− , 
 
with the all the other characteristics of both the 
model and learning algorithms coinciding with those 
of example 1. Behavior of the values η2 ( )t  for the 
algorithms is presented on fig. 2a, and fig. 2b repre-
sents the behavior in a refined scale.  
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Fig.2b 
 
The condition number of the matrix )(tR  from (9), 

corresponding to such a system is of order 410 . 
 
Example 3. Let now the disturbance v(t) correspond-
ing to example 2 be the white-noise one, with all the 
others characteristics being as those of example 2. 
Corresponding curves are presented at fig. 3. 
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Fig. 3 
 
The condition number of the matrix )(tR  from (9), 

corresponding to such a system is of order 410 . 
 
Example 4. Let the system subject to identification 
be of the form 
 

−−−−−= )2(006.0)1(18.0)( tytyty  
−−+−− )4(001.0)3(009.0 tyty  

)()3(0346.0)2(3.0)1(8.0 tvtututu +−−−+−− , 
 
where 
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( ) 3211 105.041.01.0 −−−− +−−= qqqqU num , 

( ) ++−= −−− 211 05.02.11 qqqU den  
43 022.0222.0 −− −+ qq  

 

and, as above, )(tiω  is the white-noise zero-mean 
and unit variance Gaussian process, 
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( ) 3211* 144.03.02.0 −−−− −−−= qqqqC , 

( ) −−+= −−− 211* 14.02.11 qqqD  
43 172.0588.0 −− −− qq , 

 
)(tnω  is the white-noise zero-mean Gaussian proc-

ess, with the standard deviation being equal to 0.05. 
All the characteristics of the learning algorithms co-
incide with those of examples 1 and 2, with dimen-
sion of the instrumental variable vector being equal 
to 15. Behavior of )(2 tη  for both the algorithms is 
presented at fig. 4. 
 
The condition number of the matrix )(tR  from (9), 

corresponding to such a system is of order 510 . 
 
Example 5. Let now the disturbance v(t) from exam-
ple 4 be a white-noise process, with all the rest char-
acteristics of example to be unchanged. Behavior of 

)(2 tη  corresponding to algorithm (8)-(10) is pre-
sented at fig. 5 (solid line). Also, at the figure, be-
havior of )(2 tη  corresponding to the conventional 
least-squares (LS) algorithm is demonstrated instead 
of recursive instrumental variables (dotted line). 
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Fig. 4 
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Fig. 5 

 
The condition number of the matrix )(tR  corre-

sponding to the system is of order 510 . The sample 
covariance matrix of the observation vector used 
within the ordinary LS-algorithm is of the same or-
der.  
 
Thus, algorithm (8)-(10) demonstrates a good effi-
ciency under various characteristics of systems sub-
ject to identification. Stability of the algorithm be-
havior is clearly manifested both with respect to the 
external disturbance structure (example 2 and exam-
ple 3; example 4 and example 5) and to the condition 
number of the matrix R(t) (example 1 and example 
2). From another hand side, the fact, that the identifi-
cation criterion Hessian is ill-posed, is not necessary 
an obstacle of convergence of the recursive schemes 
based on direct minimization of criteria of form like 
in (5) (examples 3 and 5).  Provided that Hessian is 
ill-posed, just auto-correlation nature of the external 
disturbances should be considered as a significant 
issue which considerably affects the sample covari-
ances forming the Hessian R(t) components and, 
finally, worsening convergence properties of the 
conventional identification schemes (examples 2 and 
4). 
 
 

3. PARTIAL CASES 
 
Together with general system description (1), behav-
ior convergence of algorithm (8)-(10) within various 
partial cases is also of interest. In particular, pro-
vided that, in (2), 1)( 1 ≡−qHWY , and imposing si-
multaneously, in (1), 1=Yn  lead to the following 
model 

 

)()()( * twkky
T

+= ϕθ                   (11) 
 

where it was denoted )()( tYty = , )()( tt Φ=ϕ , and 
)()( tWtw = . 

 
Under system (11), in an analogy with the above 
considered general case, choosing algorithm (6) co-
efficients is based on minimization of the conven-

tional criterion ( )∑
=

−=
t

k

T kky
t

I
1

2
)()(1 ϕθ  This leads 

to the following algorithm, which is a partial case of 
that of (8)-(10) and may be written in the following 
form 
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−−−= )()(~)()1()(~)1()( ttRtttRttd TT ϕϕθθ  

( )2)()(~)1( ttRtT ϕθ −− .               (14b) 
 

Convergence properties of algorithm (12)-(14) are 
illustrated by the example below. Let, in system (11), 
the white-noise disturbance w(t) meets the condi-
tions. 

 
0)( >< rtw  almost surely,           (15) 

)(tw  has symmetric distribution density 
supported on the interval [ ]rr;− .       (16) 

 
Under system description (11), (15), (16), behavior 
of algorithm (12)-(14) has been compared with that 
of the “dead-zone” algorithm (Bunich and Bak-
htadze, 2003). 
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The former is known to possess the property of su-
per-efficiency (Bunich and Bakhtadze, 2003). 
 
Figures 6 and 7 represent behavior of the current 
identification error norm squares 

( ) ( )**2 )()()( θθθθη −−= ttt
T

 corresponding to algo-
rithm (12)-(14) (curve OLC, dark line) and algorithm 
(17) (curve B83, light line) for a system of (11), (15), 
(16) having a 30-dimensional parameter vector *θ , 
Gausssian distribution of components of the input 
vector ϕ(t), and uniformly distributed disturbance 
w(t). Within the example, fig. 6 corresponds to 
choosing zero initial approximation )0(θ , while fig. 



 
7 corresponds to )0(θ  = ( )3,,3 K . As seen, behavior 
of algorithm (12)-(14) is asymptotically equivalent to 
algorithm (17), and mildly enough depends on the 
initial approximation. Simultaneously, one should be 

noted that strong consistency conditions of algorithm 
(12)-(14) are much weaker than those of algorithm 
(17). 
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Fig. 6 
 

0
0,0005
0,001

0,0015
0,002

0,0025
0,003

0,0035
0,004

0,0045
0,005

1 251 501 751 1001 1251 1501 1751 2001 2251 2501 2751

B83 OLC
 

Fig. 7 
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