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Abstract
In the modern world, UAVs (unmanned aerial vehicles)

are increasingly used in everyday life in solving civilian
tasks. One of the main applications of UAVs is data col-
lection with their reference to a given coordinate system.
For example, for the task of aerial photography, it is nec-
essary to accurately link each image to the global coor-
dinate system. In addition to the exact location of coor-
dinates, it is worth the exact movement of a given route,
to collect data of exactly those places that are needed.
Thus, it is very important to ensure the minimum devi-
ation of the UAV from the given route under the con-
ditions of external disturbances (wind disturbances) act-
ing on it. The article describes a procedure for assessing
wind speed and direction for a UAV control system us-
ing the SPSA method. The simulation results of the al-
gorithm operation, confirmed during flight tests on an ul-
tralight UAV with an ardupilot autopilot, are presented.

Key words
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1 Introduction
Currently, unmanned aerial vehicles (UAVs) are in-

creasingly used for various tasks. To perform an au-
tonomous flight, the UAV’s onboard autopilot memory
records the flight route in the form of a set of points
in space, which is used for navigation. Successful per-
formance of applied tasks, such as conducting aerial
photography, depends on the accuracy of positioning
and compliance with the specified trajectories of move-
ment along the route. UAV uses data of one or several
global navigation satellite systems (GNSS) GPS (USA),

GLONASS (Russia), BeiDou (China), Galileo (Euro-
pean Union) in combination with data of inertial navi-
gation system (INS) to determine position in space.

The INS includes a set of sensors that use the iner-
tial properties of the vehicle (linear acceleration, angular
velocity, and magnetic azimuth) to track and determine
its position in space. Due to the limitations on power
consumption, size and weight imposed on the onboard
UAV equipment, onboard INS have relatively low accu-
racy and accumulate significant error over time, so their
application is limited to maintaining the current equilib-
rium. For positioning, only the data from the global nav-
igation system sensor is used, which comes at discrete
points in time and often contains errors. The dynamic
characteristics of UAV and quality of operation of sen-
sors installed on it also have a significant influence on
the flight. At the same time, there are external random
influences on the UAV in the form of wind loads, so the
direction of its movement and speed of the vehicle can
fluctuate. To smooth the resulting errors, various lin-
ear filters are used, among which the most popular is
the Kalman filter and its variations [Ribeiro and Ribeiro,
2004]. However, such filters are not good enough to cope
with errors whose mathematical expectation is not equal
to zero [Palanisamy et al., 2015]. The wind effects also
lead to the appearance of biased error.

One way to improve the performance of the Kalman
filter in such a situation is to use randomized methods
[Dunı́k et al., 2011]. In particular, the Simultaneous
Perturbation Stochastic Approximation (SPSA) method
[Granichin, 1992; Spall, 1992; Spall, 2003] is widely
used. It is supposed to deliberately remove the system
from the balance state in order to counteract random in-
fluences. This method has a mathematical structure that
allows to estimate its stochastic properties also for op-
timization problems subject to noise and uncertainties.
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Due to these properties, SPSA is used to optimize many
adaptive control problems, such as UAV group control
[Antal et al., 2010] and the tuning of complex, large-
scale models [Alessandri and Parisini, 1997].

The paper proposes to extend the results obtained in
[Amelin and Granichin, 2011; Amelin, 2012; Amelin
and Granichin, 2012; Amelin and Granichin, 2016] for
the application of the SPSA method to counteract ran-
dom changes in wind strength and direction, and to de-
velop a wind estimation module based on this method
for testing on a real UAV.

2 Methods of Following the UAV Trajectory
2.1 Algorithms for Maintaining a Trajectory

Accurate trajectory tracking is one of the main require-
ments for UAVs [?].

Strategies for solving the problem of following a given
path can be categorized into two groups: geometric and
theoretical.

Geometric methods represent target point pursuit
[Conte et al., 2004], Line-Of-Sight (LOS) guidance laws
[Rysdyk, 2006], and their combinations [Kothari et al.,
2010]. Such algorithms use Virtual Target Point (VTP).
The guidance laws instruct the UAV to pursue the VTP,
which eventually leads it to a given trajectory. The dis-
tance between the VTP and the UAV position projected
on the trajectory is called the virtual distance. The sta-
bility of the LOS guidance laws depends significantly on
the choice of the virtual distance parameter. The pursuit
and line-of-sight guidance laws can be combined to cre-
ate a new guidance law for path following [Kothari et al.,
2010]. Instead of using line-of-sight pursuit or guidance,
the Non-Linear Guidance Law (NLGL) was developed
in [Park et al., 2007] using VTP. Usually, path follow-
ing laws are derived from Lyapunov stability analysis,
which guarantees globally stable convergence to the de-
sired path. Another variant of vector field is proposed in
[Chen et al., 2013], which is called tangent vector field
induction. A development of this method capable of han-
dling slow wind changes is given in [Bingyu Zhou et al.,
2017].

Theoretical control methods, in particular nonlinear
control methods, are popular for path tracking applica-
tions. They provide some robustness to wind distur-
bances. A common approach used in path tracking based
on Proportional-Integral-Differential (PID) control [Sun
et al., 2008], but does not work as well as NLGL [Park
et al., 2007].

Several other types of theoretical control methods are
known, which have been developed to solve the prob-
lems of UAV following a given route. Some of them are
well known methods are linear-quadratic control (LQR)
[Lee et al., 2010], sliding mode control [Healey and
Lienard, 1993], control with model prediction [Jackson
et al., 2008], step-back control [Ahmed and Subbarao,
2010], gain scheduling theories [Cunha et al., 2003] and
dynamic programming [da Silva and de Sousa, 2010],

and control based on piecewise affine functions [Shehab
and Rodrigues, 2005].

2.1.1 Error Filtering for Offset Measurement
Errors or uncertainties in the control signal usually rep-
resent a random process. The problem of prediction of
such a random process is most typical for Kalman filter-
ing, which is based on the works of R.E. Kalman and
R.S. Busey [Kim and Bang, 2018]. In addition to sta-
tistical ones, there are minimax problem formulations.
They assume that uncertainties are only bounded in some
sense, otherwise they can be arbitrary. In such formula-
tions, with a predetermined level of perturbations, one
obtains predictions in the form of sets whose sizes sta-
bilize with time [Garulli et al., 2003]. In this case, there
is no way to obtain reasonable exact estimates. Further
practical use of set estimators leads to complex robust
stability problems [Kuntsevich, 2007].

The error detection problem is complicated by the low
diversity of input data. The possibility of adding a partic-
ular signal in the control system can alleviate the prob-
lem of reconstructing unknown parameters. For exam-
ple, in [Aleksandrov and Orlov, 2009], a series of single
pulses in the input channel allowed the reconstruction of
the impulse function of the object. In addition, special
randomized signals in the input channel make it possible
to determine the parameters of the control object, when
considering an object model with almost arbitrary addi-
tive disturbances. The procedure proposed in [Granichin
and Polyak, 2003] works for any interference and does
not require a priori knowledge of its characteristics. The
recovery of unknown parameter values is provided by the
properties of randomized test signals, which are added in
the control loop to the adaptive control own signals com-
ing from the feedback.

2.2 Methods of Measuring Wind Parameters Dur-
ing the UAV’s Flight

Several methods are used to estimate wind parame-
ters during UAV flight, which can be divided into two
groups: with the use of special sensors and without them.

One method of measuring three-dimensional wind is
the multi-hole-probe algorithm (MHPA) [Van et al.,
2008], combined with data on the orientation and posi-
tion of the UAV in space, and its speed. The achievable
high resolution and accuracy of this method requires ac-
curate and fast INS, as well as pressure measurements
using multi-hole probes. The Pitot Tube Algorithm,
(PTA) is described in [Dobrowolski et al., 2005], which
does not require a multi-hole probe, but only a static
Pitot tube to measure dynamic pressure, making it less
complex and expensive. Wind speed can be estimated
without on-board airflow sensors, for example using the
NFSA (no-flow-sensor algorithm) published in [Mayer
et al., 2012]. The NFSA uses only the information about
the track speed and azimuth of the flight path obtained
from the GNSS. Methods without special sensors are
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more complex, but cost-effective compared to the previ-
ous ones. The fixed wing UAV considered in this paper
uses the Pitot tube algorithm as a compromise between
cost, complexity and accuracy of the data obtained.

3 Adaptive Randomized Algorithm
This section presents a brief overview of the basic con-

cepts associated with the SPSA algorithm; more techni-
cal details are described in the relevant literature [Spall,
2003].

Let us consider the problem of finding the minimum of
a differentiable loss function:

Ln(θ) : Rp → R,

(the lower index n is used to show that the loss func-
tion is affected by noise, whose distribution must satisfy
several important conditions [Spall, 2003]).

The task is to find an approximation θ at which Ln(θ)
is minimal. The SPSA method computes the approxima-
tion θ at iteration k + 1 as follows:

θk+1 = θ̂k − akĝk(θ̂k),

where ĝk is the estimated gradient at the k-th iteration
and ak is the coefficient that is planned to decrease with
each iteration:

ak =
a

(k +A)α
,

where a, A and α are preselected configuration co-
efficients. To estimate ĝk(�) the following method
of ”simultaneous perturbations” is used. Let ∆k =
[∆k1∆k2...∆kp]

T ∈ Rp be a vector of independent ran-
dom variables with zero mean (satisfying the conditions
described in [Spall, 2003]), and let the sequence of vec-
tors ∆k be an independent sequence with ∆k indepen-
dent of θ̂j , j = 0, 1, ..., k. The basic SPSA method
(bSPSA) computes two new points in the decision space
and estimates the corresponding losses as follows:

y+k = L̂n(θk + ck∆k)

y−k = L̂n(θk − ck∆k),

where ck is a sequence of coefficients:

ck =
c

(k + 1)γ
,

where c and γ are positive configuration coefficients.
Then the estimate of the gradient at the k − th iteration
is calculated by the following formula:

ĝk(θ̂k) =
y+k − y

−
k

2ck
[∆−1

k1 ∆−1
k2 ...∆

−1
kp ]T .

Note that all elements of the vector θ are perturbed
simultaneously, and that only two loss measures are
needed to estimate the gradient independently of the size
θ̂. In practice, the sequence ∆k is independently gener-
ated by a Bernoulli distribution yielding ±1 with prob-
ability 1

2 for each value. In this case the perturbations
have the same amplitude for all components of θ.

4 Estimation of Wind Parameters Using SPSA
4.1 The Coordinate System

Three Cartesian coordinate systems can be used for
wind estimation according to Boyffer [Boiffier, 1999]
(see Fig.1). The first is the Earth coordinate system or
global coordinate system with the index e. It has the i1e-
axis pointing north, the i2e-axis pointing east, and the i3e
- axis pointing down. The second is a connected or local
coordinate system with the index l. When it is used, the
origin is in the center of gravity of the aircraft; the i1l -
axis points forward, the i2l -axis points toward starboard
and the i3l -axis points downward. And the third is the
velocity coordinate system with the index s, which is
referenced to the airspeed of the UAV, that is, its speed
relative to the air. It has the same origin as the local co-
ordinate system, the i1s-axis is located along the air flow,
the i2s-axis is in the UAV symmetry plane and is per-
pendicular to the flow and the i3s-axis is directed down
relative to the UAV.

Figure 1. Top view of the wind measurement with indices s, l and
e representing the velocity, local and global coordinate systems, re-
spectively. ψ is the yaw angle or true course of the UAV and β is the
side slip angle between the velocity coordinate system and the local
coordinate system.
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Figure 2. Target heading, course, wind drift.

4.2 Wind Load Vector Calculation
The vector ~w represents the direction and strength of

the airflow. A non-stationary observer, for example, a
flying UAV, sees only the relative speed ~u, but from
a fixed observation point, for example, relative to the
global coordinate system. The UAV moves at a veloc-
ity of ~v , which is the sum of ~u and ~w. This ratio is
the basis of all UAV wind measurement methods. The
wind vector in the global coordinate system is the differ-
ence between the vectors ~we and ~ue. The UAV velocity
vector ~we is usually measured using GNSS data and can
be measured with fairly good accuracy, whereas the true
airspeed vector ~ue relative to the UAV is a more difficult
parameter to estimate, as is the airborne position, such
as in Euler angles. According to Bange [Bange, 2009],
the wind vector can be calculated using the following
formula:

~we = ~ve + Tel(~ul + ~Ωl × ~O)

where ~ul represents true airspeed vector in the local co-
ordinate system of the UAV, Tel is a matrix of transfor-
mation from global to local coordinate system, ~Ωl is a
vector of local angular velocities of the UAV, whilst ~O
is a lever of the vector arm ~Ωl, representing the distance
between the INS and the airspeed sensor.

4.3 Randomization for Estimating Unknown Wind
Parameters in UAV Control

4.3.1 Problem Statement An algorithm for cal-
culating corrections to the course of motion using the
SPSA method is proposed in [Amelin, 2012] when the
wind acts with constant speed but variable direction in
the horizontal plane. In this paper, to calculate the cor-
rections to the control, we consider the impact of wind
loads in the horizontal plane, where it is expressed in
the deviation of the UAV from a given trajectory, and in
the vertical, where due to its impact there is a deviation
from the held altitude. To be able to separate the known
quantities from the unknown, let us represent as compo-
nents ~ve = (vi1e , vi2e , vi3e)T and ~we = (wi1e , wi2e , wi3e)T .
For convenience, we write the horizontal wind compo-
nents wi1e and wi2e in polar coordinates θ, b, where θ is
the wind direction and b is its strength. We denote the
vertical wind component wi3e by h. The location data are
computed at time intervals ∆, i.e., at time Tk = T0 + ∆t

the triples of numbers (xt, yt, zt) arrive. To control the

UAV, creating a sequence of control signals fed to the
actuators, it is necessary to estimate the unknown pa-
rameters θ, b and h from the observations (x̂t, ŷt, ẑt).

Let a point of direction to the target (A,B,H) be
given. At each time moment t, the UAV is at the point
(xt, yt, zt) (see Fig.2). At each beat of time from t to t+1
the course to be followed by the UAV is calculated. At
this time interval the UAV movement in the direction of
course u is interfered by the wind.

Changes in wind direction angle and wind speed can
be estimated by the following formulas:

θt+1 = θt + εt+1

bt+1 = bt + ξt+1

ht+1 = ht + µt+1,

where ε, ξ and µ are independent, centered and equally
distributed random variable quantities. The optimiza-
tion of motion to the endpoint requires at time t by the
sequence of observations (x̂i, ŷi, ẑi)

t
i=0, to propose a

model to estimate θt+1, bt+1, ht+1, minimizing the stan-
dard deviations:

E
{

(θt+1 − θ̂t+1)2
}
→ min

E
{

(bt+1 − b̂t+1)2
}
→ min

E
{

(ht+1 − ĥt+1)2
}
→ min.

4.3.2 Algorithm for Estimating Wind Parameters
Based on the SPSA algorithm and the wind direction es-
timaton algorithm described in [Amelin et al., 2013], we
construct estimates for the three wind parameters.

At each iteration of the autopilot operation, we calcu-
late the heading ψt, which must be held at the next time
beat to reach the given trajectory. Also, at each iteration,
the current direction of the UAV φt is known, and con-
sequently the error in the course εθt . The distance to a
given trajectory εbt and the distance to a given altitude
εht :

εθt = ψt − φt

εbt = distance((xt, yt), line(An, Bn, An+1, Bn+1)

εht = abs(zt −H).

The following randomized algorithm is constructed to
estimate the wind parameters:
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1. θ̂0 = b̂0 = ĥ0 = 0, α1, α2, α3, β > 0.
2. Reading UAV flight variables values.
3. Generation of a sequence of ∆n independent,

equally distributed random variables equal to ±β
with equal probability 1

2 , called trial randomized
perturbations.

4. Forming the control:

ut = ût−1 + ∆t

5. Forming the estimation of changes in wind parame-
ters:

θ̂t+1 = θ̂t − α1∆t1ε
θ
t

b̂t+1 = b̂t − α2∆t2ε
b
t

ĥt+1 = ĥt − α3∆t3ε
h
t .

6. Publication of the received wind forecast for trans-
mission to the position estimation module. Get the
control ût.

7. Going to step 2.

5 Approbation on an Airplane-type UAV
5.1 UAV Control System

The hardware of the control system is based on a three-
level architecture [Amelin and Kaliteevskiy, 2017],
which is based on the principle of dividing control al-
gorithms into a group of onboard microcomputers. This
division is based on real-time distribution of controls into
required and not required work. In the proposed system,
control is carried out by a group of three microcomput-
ers: the Px4 autopilot, which operates in real time and
is responsible for stabilizing and keeping the UAV in the
air, as well as performing the movement mission; the
Raspberry pi 4 microcomputer, which is responsible for
collecting and integrating data with various sensors, as
well as for generating and sending new autopilot mis-
sions; Intel graphics processor, which is responsible for
processing data from stereo cameras. Microcomputers
are connected by means of Serial Port.

5.2 Autopilot Architecture
The PX4 autopilot architecture consists of two layers:

an intermediate layer and a high-level layer. The middle
layer provides support for autonomous robotic systems,
internal and external communications, and system inte-
gration. The high-level layer is the flight stack, which
is responsible for flight control. The drone control algo-
rithms that PX4-Autopilot supports are in the same code-
base. The system has a reactive design. This means that

all functionality is divided into components that can be
replaced or reused, communication between components
occurs through asynchronous messages, and the system
is able to cope with different workloads.

In this work, the wind estimation module for the PX4-
Autopilot was implemented. It starts in a common work
queue with a frequency of 10 Hz. At each iteration, the
following messages are read:

1. vehicle attitude — data on the orientation of the
UAV in space;

2. vehicle local position — UAV local position;
3. vehicle gps position — data from the navigation sys-

tem;
4. vehicle global position — UAV position in global

coordinates;
5. airspeed validated — airspeed data;
6. position setpoint triplet — previous, current and

next navigation points.

To publish the wind estimate obtained during the work
of this module, the wind prediction message was created
and processed in the position estimation module.

5.3 Testing on Real UAV
The randomized algorithm was tested on an UAV plan-

ner type with PX4 autopilot. The algorithms was tested
in case the fain change of wind. Two flights were per-
formed: using the randomized wind estimation module
and the original module. The UAV using the wind esti-
mation module is not inferior to control without it, and
sometimes allows to follow the trajectory more accu-
rately. The average deviation from the trajectory when
flying without the wind estimation module was 1.2 me-
ters, and with the wind estimation module it was less 0.8
meters.

6 Conclusion
The applicability of the randomized algorithm in the

UAV trajectory deviation estimation module was inves-
tigated. A method for accounting for wind parameters
using the SPSA method was proposed. A software mod-
ule for estimation-based corrections for the PX4 autopi-
lot was developed. The algorithm was tested on an UAV.
The flight results showed that the application of the new
estimation method is not worste than PX4 algoriphm. In
future we plan to test the UAV with strong changes of
wind.
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