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Abstract
The paper is devoted to study of synchronization in

small neural networks with coupling delays. We show
that long-range zero lag synchronization is possible
even for distant neural ensembles. Weak varying of de-
lays may provide a mechanism for control of rhythmic
patterns of central pattern generators.
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1 Introduction
Synchronization is a fundamental effect observed in

all fields of physics. Particularly, there is lot of ev-
idence that it plays crucial role in brain functioning.
Neuronal synchronization is hypothesized to provide
an important mechanism for the large-scale integration
of distributed brain activity. Experiments show that
firing of different areas of visual cortex synchronize
under visual stimulation [Engel et al, 1991; Courte-
manche and Lamarre, 2005]. It is supposed that tem-
poral synchronization is concerned with binding of dif-
ferent properties of visual object. These properties are
processed in different brain areas and then are collected
together to recognize the object.
Besides cognitive tasks, synchronization is important

for motion control. Rhythmic motions of animals, such
as walking, scratching or breathing, are controlled by
rhythmic activity of the so-called central pattern gener-
ators. CPGs are neural networks that produce rhythmic
outputs autonomously, i.e. without sensory or central
input. From dynamical point of view CPGs are systems
of coupled oscillators which undergo mutual synchro-
nization. Phase relations between the oscillators deter-
mine output rhythmic patterns of neural activity which
underlie motor patterns. Different kinds of rhythmic
motions correspond to different phase relations [Yuasa
and Ito, 1990; Abarbanel et al, 1996; Duysens and Van
der Crommert, 1998].

Dynamics of neural networks is often concerned with
temporal delays in communication between the neu-
rons. These delays come from two things – i) chemical
synapses inertness and ii) finite velocity of spikes prop-
agation along axons. Synaptic delays are usually about
1 ms, but axonal delays depend on distance between
communicating neurons and may reach values of sev-
eral tens on milliseconds. Large coupling delays may
strongly change synchronization, that is why it is im-
portant to study how they influence dynamics of neural
networks [Ermentrout and Kopell, 1998; Earl and Stro-
gatz, 2003].
In this paper we consider small neural networks with

time-delayed coupling and study their dynamics. We
concentrate on features of delay-induced synchroniza-
tion. Our motivation is concerned with two things.
Firstly, we are interested how distant brain areas may
synchronize with zero lag in spite of the fact that signal
propagation between them takes large time. This prob-
lem is important for time binding and image recogni-
tion. Secondly, we examine how introduction of delays
changes phase relationships between coupled oscilla-
tors. We show that delay-induced synchronization may
provide a mechanism of CPG rhythmic patterns con-
trol.

2 Model
We model individual neuron as an oscillator with

phase φ ∈ [0; 1] growing uniformly with the velocity
dφ/dt = ω. For φ = 1, the oscillator reaches thresh-
old, emits a pulse, and resets its phase to zero. We
consider an ensemble of N non-identical neurons with
frequencies ωj interacting with a time lags. This en-
semble can be described by the system

dφj(t)

dt
= ωj +

N∑
k=1

Gjk(φj(t), φk(t− τjk)). (1)

We use technique of phase response curves (PRCs)
to describe interaction between neurons. In this



technique, coupling function is chosen in the form
Gjk(φj(t), φk(t−τjk)) = µjkF (φj(t))δ(φk(t−τjk)).
This means that when k-th neuron emits a pulse, it
is received by j-th neuron with delay τjk. When j-
th neuron receives a pulse its phase instantly changes
on value ∆φ = µjkF (φj). This value is the so-
called phase response curve. Further we use function
F (φ) = − sin 2πφ. Such form of PRC belongs to
the so-called second class, which means that incoming
pulses may either delay or advance neuron excitation.
Strictly speaking, (1) is the system with time lagging,

so it has infinite dimension and is very difficult for
studying. But because of using of PRC approach this
system can be reduced to the map of finite dimension,
which simplifies its investigation. The main idea of this
reduction is that system dynamics consists of discrete
events which occur when the neurons emit or receive
pulses. During these events (the so-called H-events)
the neurons phases are perturbed, and between these
events they grow uniformly. We construct the map that
describes how the system state changes between se-
quential H-events (the so-called H-map). The further
study of the system dynamics is based on this map.

3 Long-range synchronization
We start from studying of mutual synchronization of

two neurons with symmetric delayed coupling (N = 2,
µ12 = µ21 = µ, τ12 = τ21 = τ ). We say that a pair of
neuron is synchronized or phase locked if they fire pe-
riodically with the same period T and constant phase
shift. This dynamical mode corresponds to a stable
fixed point of the H-map. We show that phase locking
is possible when units frequency mismatch is limited
by

ω2 − ω1 ≤ ζ0 =
2µω1

1− µ
. (2)

In this case synchronous modes are observed in the
so-called “synchronization intervals” of coupling delay
τ . These intervals are depicted in Fig. 1a for ω1 = 1,
ω2 = 1.1, µ = 0.1. Inside each of these intervals a
pair of a stable and unstable periodic solutions of sys-
tem (1) exists. Stable periodic solution corresponds
to synchronization. For synchronous regimes time lag
∆ between instants of neurons firing depends on τ .
It weakly changes inside one synchronization interval
and strongly changes from one interval to another. No-
tice that intervals with in-phase and antiphase synchro-
nization alternate while τ grows.
Synchronization intervals exist for arbitrary large val-

ues of τ . Their width grows when frequency mis-
match between the neurons decreases. When neurons
are identical synchronization intervals cover all values
of coupling delays (Fig. 1b). This means that identical
neurons synchronize their activity for arbitrary value of
τ . This phenomenon explains long-range synchroniza-
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Figure 1. Periodic solutions of system (1) – phase lag ∆/T ver-
sus coupling delay τ . Black lines correspond to stable solutions,
gray lines correspond to unstable ones. A pair of stable and unsta-
ble solution exisits in each synchronization interval. Parameters: (a)
ω1 = 1, ω2 = 1.1, µ = 0.1; (b) ω1 = ω2 = 1, µ = 0.1.
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Figure 2. (a) Two directly communicating neurons with coupling
delay τ . (b) Two neurons communicating via “dynamic relaying”.
(c) Probabilities of zero lag synchronization versus coupling delay
τ : gray line – direct coupling, black line – dynamic relaying.

tion, because synchronization occurs for all values of
τ .
In a model of two identical coupled neurons synchro-

nization may be either in-phase (∆ = 0) or antiphase
(∆ = T/2) for different τ . But experiments provide
evidence of only zero lag distant synchronization. To
explain this feature we introduce the so-called “dy-
namical relaying” model [Vicentea et al, 2008] . This
model assumes that two neurons do not communicate
directly with each other, but both of them exchange
pulses with an interneuron between them. Pulse prop-



agation between each of neurons and interneuron takes
time τ/2. In this case zero lag synchronization is ob-
served for almost always for all values of τ (Fig. 2).

4 Rhythmic patterns control via delay
Let us return to the pair of two directly coupled neu-

rons. Phase lag between the moments of their firing de-
pend on coupling delay. This fact may be used for con-
trol of phase relationships in a small network of spik-
ing neurons. Figure 3 illustrates this idea. In this figure
phase lag ∆/T for synchronous regime is plotted for
ω1 = 1, ω2 = 1.01, µ = 0.1. For τ ∈ [0; 0.5] two
overlapping synchronization intervals exist. The rela-
tive interspike lag ∆/T varies from 0 to almost 0.5 for
the first interval and from 0.5 to almost 1 for the second
one. Thus, varying τ one can obtain regimes with ar-
bitrary value of interspike lag. When τ increases from
0 to 0.5, the phase shift between oscillators smoothly
grows from 0 to 0.5. When τ decreases from 0.5 back
to 0, the phase shift smoothly grows from 0.5 almost to
1 and then jumps to zero. Because of equality of zero
and one this leap is inessential. Thus one can smoothly
switch system mode between in-phase and anti-phase.
Dynamics of larger neural networks may be controlled

by coupling delay as well. To illustrate this we consid-
ered a network of four globally coupled neurons de-
picted in Fig. 4a. The neurons are located in cor-
ners of a square, delays between neighboring neurons
equal τ/2, delays between diagonal neurons equal τ .
Coupling strength between each pair of neurons equals
µ = 0.1. Frequencies ωj have Gaussian distribution
with median value ω = 1 and dispersion σ = 0.01.
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Figure 3. Phase lag control via coupling delay. When τ increases
from 0 to 0.5, the relative interspike interval∆/T almost smoothly
grows from 0 to 0.5. When τ decreases, the value ∆/T smoothly
grows almost to 1 and then jumps to zero.

Dynamics of larger neural networks may be controlled
by coupling delay as well. To illustrate this we consid-
ered a network of four globally coupled neurons de-
picted in Fig. 4a. The neurons are located in the cor-
ners of a square, delays between neighboring neurons
equal τ/2, delays between diagonal neurons equal τ .
Coupling strength between each pair of neurons equals

t/2

1 2

t/2
3 4

t/2 t/2

t

t

(a)

0 0

00

0 0.25

0.50.75

0 0.5

00.5

t

0 0.5 1 1.5

(b)

Figure 4. (a) CPG consisting of four neurons with delayed cou-
pling. (b) Possible output rhythmic patterns ant τ intervals inside
which they exist.

µ = 0.1. Frequencies ωj have Gaussian distribution
with median value ω = 1 and dispersion σ = 0.01.
This small network is an example of central pattern
generator capable to demonstrate a number of rhyth-
mic activity patterns. These patterns differ with phase
relationships between neurons. Relations correspond-
ing to three such patterns are depicted in Fig. 4b. The
first pattern corresponds to global synchronization of
the system, when all the phases are equal. In the second
pattern all neurons fire sequentially with phase shift
∆φ = 0.25. In the third patter neurons divide into
two pairs which fire in antiphase. These patterns exist
in different intervals of τ (which may intersect) plotted
in Fig. 4b. Though, one can control output rhythmic
pattern of the CPG via coupling delay changing.

5 Conclusion
We have studied influence of coupling delay on dy-

namics of small neural networks. An interesting result
is that mutual synchronization of coupled neurons is
possible even for large coupling delays. This explains
long-range synchronization observed in numerous ex-
periments. Zero-lag long-range synchronization can be
explained with dynamical relaying.
Another result is that coupling delay may be an in-

strument for output rhythmic patterns control of central
pattern generators. We show that varying delays values
in small network of coupled oscillatory neurons allows
to change phase relationships between the units. This
may be interesting for locomotion of animals or robots
[Shinkichi et al, 2006]. Different outputs correspond to
various motor patterns and various motions.
For example, when oscillators control motions of

limbs, different patterns correspond to different gait
types – walk, trot, gallop. One can object that it is dif-



ficult to vary all coupling delays simultaneously. But
absolute values of delays do not play any crucial role,
because the most important are relations between them
and oscillations frequency. So varying of delays is
equal to changing of network oscillation rate. Switch-
ing between patterns may occur when this frequency
grows. This agrees with experimental data providing
evidence that different velocities of animal motion cor-
respond to different gaits.
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