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We investigate stochastic extinction processes in the presence of non-Gaussian noise. Motivated by
the process of natural disease extinction in epidemics, we examine the impact of random vaccinations
in large populations. We show that, in the absence of vaccinations, the effective entropic barrier
for extinction in an SIS model displays scaling with the distance to the bifurcation point, with
an unusual critical exponent. Even a comparatively weak Poisson-distributed vaccination leads
to an exponential increase in the extinction rate, with the exponent that strongly depends on the
vaccination parameters. We make a direct comparison between predictions and numerical simulation
in both 1 and 2 dimensional models.
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INTRODUCTION

On the major goals in stochastic population dynamics,especially in modeling epidemic spread in a population, is
that of predicting finite extinction times, when one or more components of the population go to zero. Practically all
diseases of interest exhibit randomness resulting in observed fluctuations. Childhood diseases [1–3], meningitis [4],
dengue fever and malaria [5] are but a few examples where incidence rates fluctuate with significant amplitude. These
fluctuations arise from random contacts within a population, uncertainty in epidemic parameters, and stochastic flux
changes from external coupled populations [6, 7]. As diseases evolve in large populations, there is the possibility
of finite time extinction and reintroduction of the disease [8, 9]. Extinction occurs where the number of infectives
become so small that there is insufficient transmission to keep the disease in its endemic state [10–12]. Therefore, in
the absence of disease reintroduction, the epidemic dies out.

For epidemic models where only susceptibles (S) and infectives (I) (and possibly recovered (R)) are present, (called
SIS or SIR models) [13], the disease spread can be characterized by the reproductive rate of infection, R0. In its
deterministic form, R0 can be defined so that, for an endemic state to exist along with the disease free equilibrium
(DFE), R0 >1. When R0 < 1, the disease becomes extinct. For appropriate parameters where both states co-exist,
the disease free state is unstable, and the endemic state is attracting. For the models we consider here, the it is
assumed the endemic state is globally attracting.

In the presence of fluctuations, the situation becomes more complicated. Fluctuations cause the disease free state
to be reached albeit for a limited time, as indicated by both numerical [14–17] and analytic [13, 18–21] results for
various models. Such an extinction process occurs even when R0 is greater than unity.

A major characteristic of fluctuation-induced extinction in the SIS stochastic model for large populations is the
extinction rate, or the reciprocal mean first time the number of infectives approaches zero. It has been studied by
approximating the full two dimensional stochastic system as a continuous one, with fluctuations induced by noise
in the Langevin approach. A discrete birth-death SIS model was investigated recently and a comparison with the
continuous model was performed by Doering et al. [21]. The analysis referred to a one-variable model, which allows
one to obtain an explicit solution in various regimes of R0. However, this model does not reveal some generic features
of the full discrete SIS system, including the scaling behavior of the extinction rate.

It is the purpose of this paper to analyze in full the general SIS discrete model, and obtain explicit scaling behaviors
of extinction rates in the neighborhood of disease onset; i.e., when the reproductive rate is greater than but close
to unity. Using these scaling results, we will study the effect of vaccination on the extinction rate. Since vaccine
scheduling is inherently random despite the best policy controls, we will examine the important case where the
vaccine schedule is a Poisson process. As we show, even a comparatively weak vaccination can affect the extinction
rate exponentially strongly. The analysis of both problems requires developing methods, to the best of our knowledge,
have not been previously used in the theory of large rare fluctuations of multivariable systems.
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THE DISCRETE MODEL

We consider a model where susceptibles (S) are born at rate µ, both susceptibles and infectives (I) die at the same
rate µ, and infectives recover at rate κ and immediately become susceptible. If susceptibles contact infectives, they
may become infected at rate β. Time-dependent vaccination of incoming susceptibles reduces their probability to
become infected at rate ξ(t). This rate will be assumed small, on average. We also assume that once vaccinated, they
are recovered.

Since the events of birth, death, and contact happen at random, we model the process discretely. Letting vector
X = (X1, X2) with components X1 = S, X2 = I and vector r = (r1, r2) with components r1 and r2, we show,
respectively, the increments in S and I in a single transition. They are transitions between the states of the system
with different S and I. Therefore the quantity of interest is the probability ρ(X, t) to have given S and I at time t.
Its evolution is given by the master equation

ρ̇(X, t) =
∑

r

[W (X − r; r)ρ(X − r, t) − W (X; r)ρ(X, t)] , (1)

and the transition rates W (X, r) are

W
(

X; (1, 0)
)

= N [µ − ξ(t)], W
(

X; (−1, 0)
)

= µX1,

W
(

X; (0,−1)
)

= µX2, W
(

X; (1,−1)
)

= κX2,

W
(

X; (−1, 1)
)

= βX1X2/N, (2)

where N is the scaling factor which we set equal to the average population, N ≫ 1.
For sufficiently large S, I ∝ N , fluctuations of S, I are small on average. If these fluctuations are disregarded, one

arrives at the deterministic (mean-field) equations for the mean values of S, I

Ẋ1 = N [µ − ξ(t)] − µX1 + κX2 − βX1X2/N, (3)

Ẋ2 = −(µ + κ)X2 + βX1X2/N. (4)

These are standard equations of the SIS model [1]. In the absence of vaccination, ξ(t) = 0, for R0 = β/(µ + κ) > 1
they have a stable solution XA = NxA with x1A = R−1

0 , x2A = 1−R−1
0 . It describes the endemic disease. In addition,

Eqs. (3) have an unstable stationary state (saddle point) XS = NxS with x1S = 1, x2S = 0. This state corresponds
to extinction of infectives.

For N ≫ 1 and for small vaccination rate the steady state +distribution ρ(X) has a peak at the stable state XA

with width ∝ N1/2. This peak is formed over a typical relaxation time tr = max[µ−1, (β − µ − κ)−1]. However, we
are interested in the probability of having a small number of infected, X2 ≪ X2A. It is determined by the tail of the
distribution. The tail can be obtained by seeking the solution of Eq. (1) in the eikonal form,

ρ(X) = exp[−Ns(x)], x = X/N, ,

ρ(X + r) ≈ ρ(X) exp(−pr), p = ∂xs. (5)

For time-independent parameters W this formulation was used in a number of papers [20–26].
To leading order in N−1, the equation for s has a form of the Hamilton-Jacobi equation ṡ = −H(x, ∂xs; t), where

s is the effective action, and the effective Hamiltonian is

H(x,p; t) =
∑

r

w(x; r) (epr − 1) , (6)

with w(x; r) = N−1W (X; r) being the transition rates per person. Action s(x) can be found from classical trajectories
of the auxiliary system with Hamiltonian H ,

H(x,p; t) = µ(ep1 − 1) + µx1(e
−p1 − 1) + µx2(e

−p2 − 1)+

κx2(e
(p1−p2) − 1) + βx1x2(e

(p2−p1) − 1)/N2 (7)

that satisfy equations

ẋ = ∂pH(x,p; t), ṗ = −∂xH(x,p; t). (8)
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EXTINCTION IN THE ABSENCE OF VACCINE

In this section, we assume there is no vaccine, ξ(t) = 0, and the fluctuations are from the random contacts. Here,
the transition rates w = w(0) and the Hamiltonian H = H(0) are independent of time, and we consider the stationary
distribution. The function s = s(0) is then independent of time. It has the form [23–26],

s(0)(xf ) =

∫ tf

−∞

p ẋ dt, H(0)(x,p) = 0. (9)

Here, the integral is calculated for a Hamiltonian trajectory
(

x(t),p(t)
)

that starts at t → −∞ at x → xA,p → 0 and
arrives at time tf at a state xf . This trajectory describes the most probable sequence of elementary events X → X+r

bringing the system to Nxf . It provides the absolute minimum to s(0)(xf ), and s(0)(xf ) is independent of tf . The
quantity Ns(0)(x) is the entropic barrier for reaching Nx; it gives also the exponent in the expression for the mean
first passage time for reaching Nx from the vicinity of the attractor XA [27].

The extinction rate is determined by s(0) by taking the limit x2 → 0. It is intuitively clear, and can be shown from
Eq. (6) that the maximum of s(0)(x) over x1 for x2 → 0 is reached at the saddle point xS of the fluctuation-free

motion (3). Thus the entropic barrier for extinction is Ns
(0)
ext = Ns(0)(xS).

The Hamiltonian trajectory xext(t),pext(t) that gives s(0)(xS) is the optimal extinction trajectory. One can show
that it approaches xS as t → ∞. This is similar to other problems of an optimal trajectory leading from a deterministic
stable state to a saddle point [25, 28]. However, in contrast to the more common situation, for t → ∞ the momentum
pext does not go to zero. Instead pext(t) → pS , with pS =

(

0,− lnR0

)

. This is in spite of the fact that, along with

(xS ,pS), the Hamiltonian H(0) has a “standard" fixed point (xS ,p = 0).
To show that this is indeed the case in the multidimensional system under consideration we note that the optimal

extinction trajectory should lie on the stable manifold of the appropriate fixed point. It is straightforward to show
that the stable manifold of (xS ,p = 0) lies in the plane x2 = p1 = 0. An optimal path does not reach this plane
at any finite time. From Eq. (8), x2 approaches zero exponentially as t → ∞, but for t → ∞ the system as a
whole approaches a fixed point. Therefore the optimal extinction trajectory does not lie on the stable manifold of
(xS ,p = 0). It may only lie on the stable manifold of the fixed point (xS ,pS), which is not confined to a plane in
the (x,p) space.

The situation where an auxiliary Hamiltonian system has two fixed points with the same xS was first noticed for a
system described by the Fokker-Planck equation with a singular diffusion matrix at xS [18], and the “right" point was
chosen based on numerical simulations. This situation was also found for a system described by a one-variable master
equation, where the Hamiltonian dynamics is integrable [20]; it occurs also in a two-variable susceptible-infected-
recovered (SIR) model concurrently studied by Kamenev and Meerson [29].

Equations (8) allow finding the extinction rate for any values of the parameters of the system. An explicit analytical
solution in the absence of vaccination can be obtained close to a bifurcation point where the number of the stationary
solutions of the deterministic equations changes [25]. In the present case it corresponds to 0 < η ≪ 1, η = β−µ−κ ≡
(µ + κ)(R0 − 1). For η ≪ 1 the mean-field value of x2 in the stable state x2A = η/β ≪ 1 is close to x2S . The
relaxation time of x2 near the stable state is η−1. It is much longer than the relaxation time of x1, which is µ−1, i.e.,
x2 is a soft mode. Coordinate x1 follows x2 adiabatically on the time scale that largely exceeds µ−1.

The solution of Hamiltonian equations (8) in the adiabatic approximation is simplified by the fact that x2 ≪ 1 and
|p2| ≪ 1. To leading order in η we have x1 = 1− x2, p1 = βx2p2/µ, while the equations for slow variables x2, p2 have
the Hamiltonian form

ẋ2 = ∂Had/∂p2, ṗ2 = −∂Had/∂x2 (10)

with Hamiltonian Had = ηx2p2 − βx2p2(x2 − p2). The Hamiltonian trajectory is

p2(t) = x2(t) −
η

β
, x2(t) = x2A

(

1 + eη(t−t0)
)−1

. (11)

The solution in Eq. 11 describes in particular the optimal extinction trajectory as depicted in Fig. 1. The full
Hamiltonian system using Eqns. ??,8 was also computed to get the optimal path from the attractor to the extinct
state. The solution compared with the adiabatic time series is shown Fig. 2, where the control parameter, η,is small.

From Eqs. (9), (11) we derive our first main result:

s
(0)
ext = s(0)(xS) = η2/2β2. (12)
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Figure 1: 3D projections of the optimal extinction trajectory in Eqs. (8), (11) in scaled coordinates x̃2 = x2/(R0 − 1), p̃2 =
p2/(R0 − 1), x′

1 = (R0 − 1)(1 − x1), p̃1 = (µ/β)(R0 − 1)2p1. Panels (a) and (b) show x1, x2, p1 and x1, x2, p2 projections. The
trajectory goes from point A that corresponds to the stable state of the system with coordinates xA and zero momentum to
point S that corresponds to extinction of the disease, with coordinate xS and with nonzero momentum p.
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Figure 2: Time series of the heteroclinic orbits. The time series in bold represents those of the adiabatic equations 11. The
dashed lines were computed using the full Hamiltonian system in Eq. 8. Here the coordinates are un-scaled. The parameters
valued in the numerical computations were µ = 0.02, γ = 100.0, β = 100.05, η = 0.0308.

The entropic barrier for extinction Ns
(0)
ext (12) scales with the distance to the bifurcation point η ∝ R0 − 1 as η2. This

is in contrast to the standard scaling of the activation energy of escape near a saddle-node bifurcation point, where
the critical exponent is 3/2 [25]. Such unusual scaling is related to pS being nonzero. It emerges also in the SIR
model [29].

VACCINE ENHANCED EXTINCTION

If ξ(t) is a stationary noise, the distribution 〈ρ(X)〉 averaged over noise realizations is stationary, too. However, for
a given realization ξ(t), ρ(X) ≡ ρ(X, t) is time-dependent, as is also s ≡ s(x, t). We are interested in the region of x

where the mean first time of reaching x from the vicinity of the stable state largely exceeds the correlation time tcorr
of ξ(t). Then arrivals to a given x are uncorrelated with each other.

The full Hamiltonian of the system that determines s can be written as H = H(0) + H(1), with

H(1)(x,p, t) = −ξ(t)h(x,p), h = exp(p1) − 1. (13)

The term H(1) is small for weak noise ξ(t). Because s(xf , tf ) provides a minimum to the integral over time of p ẋ−H ,
to first order in ξ(t) we have [30]

s(xf , tf ) ≈ s(0)(xf ) +

∫ tf

−∞

dtξ(t)χf (t). (14)

Here, χf (t) = h
(

x(t|xf , tf ),p(t|xf , tf )
)

; the functions x(t|xf , tf ),p(t|xf tf ) are unperturbed Hamiltonian trajectories

given by Eq. (8) with H = H(0) and with boundary conditions x(t) → xA,p(t) → 0 for t → −∞ and x(tf ) = xf .
From Eq. (14) the logarithm of the distribution ρ(Xf , tf ) is linear in the force ξ(t). The proportionality coefficient

is ∝ χf (t), and therefore we call χf (t) the logarithmic susceptibility, as for systems where fluctuations are induced by
Gaussian noise [31]; it is convenient to set χf (t) = 0 for t > tf .
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Equations (??), (14) lead to a simple general expression for the distribution averaged over realizations of noise,

〈ρ(X)〉 = A(X)ρ(0)(X), A(Xf ) = P̃ξ[iNχf (t)], (15)

where ρ(0) is the distribution for ξ(t) = 0 and P̃ξ[κ(t)] =
〈

exp
[

i
∫

κ(t)ξ(t)dt
]〉

is the characteristic functional of ξ(t).
Because N ≫ 1, an already weak noise ξ(t) can significantly change the distribution, the factor A can be exponentially
large. This happens because an outburst of noise of an appropriate temporal shape can largely increase the probability
of the chain of reactions X → X + r that brings the system to a given state.

The above analysis can be extended also to the problem of extinction. A physically reasonable formulation is to
study the probability of reaching a small vicinity of xS where, nevertheless, |xf − xS | largely exceeds N−1/2 and
the typical amplitude of ξ(t)-induced fluctuations, so that corrections to s(xf , tf ) remain small. The unperturbed
Hamiltonian trajectories leading to this area form a narrow tube around the optimal extinction path (xext,pext). If
we choose xf close to this path and to xS , from Eq. (15) the noise-induced change of the probability of reaching Nxf

is described by the factor

Aext = P̃ξ[iNχext(t)], χext(t) = h
(

xext(t),pext(t)
)

(16)

We call Aext the noise-induced extinction factor. It is independent of the precise choice of xf , because
h
(

xext(t),pext(t)
)

is small for xext(tf ) close to xS , and therefore the integral over time in the noise-induced cor-
rection to the action (14) can be extended to infinity.

To illustrate the effect of noise on extinction we consider an important model where the noise is a Poisson process,
ξ(t) = g

∑

j δ(t − tj) with average pulse frequency ν. For such noise, Aext has a form [32]

Aext = AavAfl, Aav = exp

[

−ν

∫ ∞

−∞

dt κ(t)

]

, (17)

Afl = exp

[

ν

∫ ∞

−∞

dt
(

e−κ(t) − 1 + κ(t)
)

]

with κ(t) = gNχext(t). The factor Aav describes the effect of the average noise 〈ξ(t)〉 = νg, whereas the term Afl

describes the effect of the fluctuating part of ξ(t) with zero mean.
It is seen from Eq. (17) that Afl > 1; this agrees with the qualitative picture described above in which even zero-

mean noise leads to the increase of the probability of fluctuations in the system and specifically, of the extinction rate.
In the limit of small noise amplitude g, where |κ(t)| ≪ 1, we have Afl = exp

[

ν
∫

dt κ2(t)/2
]

, implying lnAfl ∝ g2. In

the opposite limit where max[−κ(t)] ≫ 1 we have Afl = exp
[

ν(2π/κ̈m)1/2 exp(−κm)
]

, where −κm ≡ −κ(tm) is the
maximum of −κ(t) and κ̈m = κ̈(tm). In this case lnAfl is exponential in the noise amplitude g.

An explicit expression for Aext can be obtained near the bifurcation point. It follows from Eq. (11) that here
χext = ẋ2/µ. This gives Aav = exp[νηgN/βµ]. The exponent in Aav linearly scales with the distance to the
bifurcation point η and the noise amplitude g.

The fluctuation part of the extinction factor Afl is determined by the parameter σ = gη2N/µβ. For σ . 1
we have Afl ≈ exp[νσ2/12η]. Here lnAfl ∝ η3g2νN2. In the opposite limit of σ ≫ 1 we have Afl ≈
exp[(4ν/η)(π/σ)1/2 exp(σ/4)]. Here the dependence of Afl on the vaccination amplitude g is double exponential,
which is extremely strong.

CONCLUSIONS AND DISCUSSION

In summary, we have considered fluctuations in the full two-variable SIS model and found the rate of extinction
of disease with and without vaccination. The problem has been reduced to the analysis of dynamics of an auxiliary
Hamiltonian system, with nontrivial boundary conditions. We showed that, where the reproductive rate of infection
R0 is close to one, the extinction rate displays scaling with R0 in the absence of vaccination, with the logarithm of
the rate being ∝ (R0 − 1)2. We showed that even comparatively weak vaccination can exponentially strongly affect
the extinction rate. A general expression that describes this effect for random vaccine in terms of its characteristic
functional has been obtained. For a Poisson distributed vaccine, the change of the exponent of the extinction rate
may itself depend on the vaccine strength exponentially.

One of the important aspects of our work shows not only how random vaccinations improve the time to disease
extinction, but it also shows how limited resources may be implemented in order to achieve a particular extinction
rate. For example, it may be possible to vaccinate a limited fraction of new susceptibles every year, but maybe apply
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Figure 4: Extinction factor based on computed heteroclinic orbits plotted in Fig. 2 (dashed lines) and Eq. 16

it more frequently. Conversely, it may be possible to one vaccination per year that is massive (a current approach
for most childhood diseases). Other approaches for slow diseases may require vaccination that is intermittent. The
analysis predicts just just how much the strength and application frequency of the vaccine is needed to enhance disease
extinction. For small η,or slowly propagating diseases, Figs. 3 and 4 show the dependency of the extinction factor on
the amplitude A and frequency µ. Figure 3 is computed with the analytic adiabatic approximation while Fig. 4 is
computed based the exact optimal path. The agreement is excellent, and the contours show the explicit dependence
of the extinction factor.
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