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Abstract
A problem of stochastic excitability analysis and sup-

pression of undesirable random fluctuations is con-
sidered. This problem is studied on the example of
the nonlinear dynamical model describing operation of
a semiconductor–gas–discharge image converter. We
show that the stochastic excitability of this system can
be explained by the high stochastic sensitivity of its
equilibrium. For the stabilization of the operating mode
of the stochastic gas discharge system, we suggest a
new constructive approach based on the idea to reduce
the stochastic sensitivity of the equilibrium by the ap-
propriate feedback regulator. A mathematical back-
ground of the analysis and control of the stochastic
sensitivity is presented. We show that using this con-
trol approach, one can suppress large-amplitude oscil-
lations and provide a proper operation of the considered
engineering device.
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1 Introduction
Many engineering devices and manufacturing pro-

cesses are modelled by nonlinear dynamic systems.
Required operating modes are typically associated with
the corresponding stable equilibria. However, in some
cases, the deterministic stability of the equilibrium is
insufficient. Inevitable random disturbances can dras-
tically change the dynamics of the system. The in-
teraction of nonlinearity and stochasticity can cause
many unexpected noise-induced phenomena [Hors-
themke and Lefever, 1984; Lai and Tel, 2011; Lind-
ner et al, 2004]. In excitable systems, even weak noise
results in the generation of large-amplitude stochastic
oscillations that are unacceptable from an engineering

point of view. As a rule, similar effects are due to
the high stochastic sensitivity [Bashkirtseva et al, 2012;
Bashkirtseva et al, 2013] of such systems.
Along with the analysis of nonlinear stochastic sys-

tems, control problems are also widely studied [Kush-
ner, 1967; Astrom, 1970; Sun, 2006; Guo and Wang,
2010]. In present paper, we suggest a mathematical ap-
proach to the analysis of the underlying reasons of the
stochastic excitability, and to the synthesis of the sys-
tems with desired probabilistic properties. A general
mathematical background of our approach is shortly
presented and discussed in Section 2.
A typical example illustrating the developed theory is

the stabilization of the operating mode in the stochastic
semiconductorgas-discharge image converter [Astrov,
1988; Astrov et al, 2008]. It was shown that even small
parametric noise can generate large-amplitude oscilla-
tions in current and cause the spontaneous interruption
of the discharge process in the gap. This transforma-
tion from the conductive to dielectric state results in
the destruction of the operating mode of this device. In
Section 3, it is shown that this destruction is due to the
high stochastic sensitivity of the equilibrium of consid-
ered model of this converter.
It is of practical importance to investigate whether it

is possible to provide a proper operation of this system.
We show that reducing the stochastic sensitivity by cor-
responding regulator, one can return the system to nor-
mal operating mode with acceptable low-amplitude os-
cillations.

2 Control of Stochastic Sensitivity of Equilibrium
Consider a nonlinear stochastic system with control

dx = f(x, u(x))dt+ εσ(x, u(x))dw(t), (1)

where x is n-dimensional state, u is l-dimensional con-
trol, f(x, u) is a continuously differentiable n-vector-
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function, w(t) is a m-dimensional standard Wiener
process, σ(x, u) is a n×m-matrix-function character-
izing a dependence of disturbances on state and control,
ε is a scalar parameter of the noise intensity.
Assume that unperturbed and uncontrolled system (1)

(with ε = 0, u = 0) has an equilibrium x̄. The stability
of x̄ is not supposed.
We select a stabilizing regulator from the class U of

admissible feedbacks u = u(x), satisfying the follow-
ing conditions:

(a) a function u(x) is continuously differentiable and
u(x̄) = 0;

(b) a feedback u(x) provides an exponential stability
of the equilibrium x̄ for the closed-loop deterministic
system

dx = f(x, u(x))dt (2)

in the neighbourhood of x̄.
Here, the first condition (a) means that x̄ remains an

equilibrium of the system (2) for any u ∈ U .
The first approximation system for the deviation
z(t) = x(t) − x̄ of states x(t) of system (2) from the
equilibrium x̄ is as follows:

dz = (F +BK)zdt, (3)

where

F =
∂f

∂x
(x̄, 0), B =

∂f

∂u
(x̄, 0).

Note that the second condition (b) is equivalent to the
exponential stability of a trivial solution of the system
(3).
Here, without loss of generality, we restrict our con-

sideration by regulators in the following linear feed-
back form:

u(x) = K(x− x̄). (4)

Consider a set K of matrices K which provide an expo-
nential stability for the trivial solution of the system (3)

K = {K| Reλi(F +BK) < 0}.

Here, λi(F + BK) are the eigenvalues of the matrix
F + BK. Suppose the pair (F,B) is stabilizable. It
means that the set K and class U are not empty.
Under the small random disturbances (ε ̸= 0), the tra-

jectories xε(t) of the stochastic system (1) leave the
equilibrium x̄. The feedback (4) with a matrix K ∈ K
providing the exponential stability of the equilibrium,
allows us to localize random states of the system (1),(4)
in the neighbourhood of the equilibrium x̄, and to form
a stationary distributed solution x̄ε(t).

The dynamics of small deviations z(t) = xε(t)− x̄ is
governed by the following first approximation stochas-
tic system

dz = (F +BK)zdt+ εGdw, G = σ(x̄, 0). (5)

The sensitivity of the system (5) solution to noise with
intensity ε is characterized by a variable y =

z

ε
.

For the covariance matrix V (t) = cov(y(t), y(t)), the
following equation holds

V̇ = (F +BK)V + V (F +BK)⊤ + S, S = GG⊤.
(6)

For any K ∈ K, this equation has a unique stationary
solution W which satisfies the matrix algebraic equa-
tion

(F +BK)W +W (F +BK)⊤ + S = 0. (7)

For non-singular noises (detS ̸= 0), the solution W of
equation (7) is positive definite.
Any solution V (t) of the system (6) converges to the

corresponding solution W of the system (7)

lim
t→∞

V (t) = W.

For the matrix W it holds that

cov(x̄ε(t), x̄ε(t)) ≈ ε2W,

where cov(x̄ε(t), x̄ε(t)) is a covariance matrix of the
solutions x̄ε of the system (1). So, the matrix W is
a simple quantitative characteristic of a response of the
nonlinear system (1) to the small noise with intensity ε.
The matrix W is called a stochastic sensitivity matrix
of the equilibrium x̄.
In many real processes, the deterministic stability of

the equilibrium is insufficient for the proper operation.
In excitable systems, noise can cause large-amplitude
stochastic oscillations unacceptable from an engineer-
ing point of view. In these circumstances, it is very
important to take into account the stochastic sensitiv-
ity of the equilibrium and provide a small dispersion of
random states by reducing the stochastic sensitivity.
So, the control of the dispersion of random states can

be implemented by means of synthesis of an assigned
stochastic sensitivity matrix W .
Let M be a set of symmetric and positive definite
n × n-matrices. For any K ∈ K the regulator (4)
forms a corresponding equilibrium of the system (1)
with stochastic sensitivity matrix WK . This matrix is
a solution of the equation (7). Consider the following
control problem.
Problem of stochastic sensitivity synthesis
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For the assigned matrix W ∈ M, it is necessary
to find a matrix K ∈ K guaranteeing the equality
WK = W, where WK is a solution of the equation (7).
In some cases, this problem is unsolvable, and so we

introduce notions of the attainability and the stochastic
controllability.
Definition 1.
The element W ∈ M is said to be attainable if the
equality WK = W is true for some K ∈ K.
A set of all attainable elements

W = {W ∈ M | ∃K ∈ K WK = W}

is called attainability set.
Definition 2.
An equilibrium x̄ is completely stochastic controllable
if

∀ W ∈ M ∃ K ∈ K : WK ≡ W.

The equality W = M is a condition of complete
stochastic controllability of the equilibrium x̄.
Let us describe the attainability set. The connection

between the assigned matrix W and the feedback coef-
ficient K follows from the equation (7) which can be
rewritten in the form:

BKW +WK⊤B⊤ +H(W ) = 0,

H(W ) = FW +WF⊤ + S
(8)

Solution of the problem of the synthesis of the assigned
stochastic sensitivity matrix W is given by the follow-
ing theorem [Ryashko and Bashkirtseva, 2008].
Theorem.

Let noise be non-singular (detS ̸= 0).
(a) If the matrix B is quadratic and non-singular then
W = M and for any matrix W ∈ M

K = K̄ +B−1ZW−1 ∈ K,

K̄ = −B−1
(
1
2SW

−1 + F
)

where Z is an arbitrary skew-symmetric n× n-matrix.

(b) If rank(B) < n then the element W ∈ M is at-
tainable if and only if the matrix W is a solution of the
equation

P2H(W )P2 = 0. (9)

Under these conditions for any matrix W ∈ M

K = K̄+C ∈ K, K̄ = B+H(W )

(
1

2
P1 − I

)
W−1,

where C is an arbitrary l×n-matrix satisfying the con-
dition

BCW +WC⊤B⊤ = 0.

Here, the sign “+” means a pseudo-inversion, P1 =
BB+ and P2 = I − P1 are projective matrices.
Note that if rankB = 1, the equation (8) has a unique

solution K = K̄.

In the next Section, we will apply this theory to the
solution of the stabilization problem for the stochastic
gas discharge system.

3 Stabilization of the Semiconductor–Gas–
Discharge Image Converter

It is known that in excitable systems, noise can gener-
ate large-amplitude escapes from the area of the phase
plane where the normal operation of the system is en-
sured. For example, this can take place in converters
of optical images that are used to record high speed
processes in the infrared range of light [Astrov et al,
2008]. These converters operate on the base of the
structure “semiconductor–gas–discharge gap”. In these
devices it was found that weak noise can generate
large-amplitude oscillations in current even at the small
current density. These undesired oscillations can result
in the interruption of the discharge process in the gap.
So it is important to suppress these large-amplitude os-
cillations and return the system to normal operating
mode with acceptable low-amplitude oscillations. In
[Astrov et al, 2008], a control approach based on the
speed-gradient method has been suggested.
In present paper, we suggest another approach based

on the synthesis of stochastic sensitivity shortly pre-
sented above.

3.1 Deterministic Model
Consider the following gas discharge dynamic system

[Astrov et al, 2008]:

Ė = a(Em − E)− bNE

Ṅ =
N

τ

(
E

Ec
− 1

) , (10)

where E is the electric field strength in the discharge
gap, and N is the density of free charge carriers in this
gap. The first equation describes the charging of the
capacity of the discharge gap from a source of feeding
voltage and its discharging due to the presence of free
carriers in the gap. The characteristic time of the charg-
ing process is equal to 1

a , b is a positive parameter. The
value Em is a maximal value of E that can be provided
by a source of constant voltage.
The second equation describes dynamics of the den-

sity of free carriers in the gap. It is assumed that N



114 CYBERNETICS AND PHYSICS, VOL. 5, NO. 4

grows when E is larger than some critical electric field
strength Ec. The positive parameter τ defines the rate
of a variation of the charge carriers density when the
electric field in the gap is not equal to the critical value
Ec.
The system (10) has the equilibrium

Ē = Ec, N̄ =
a

b

(
Em

Ec
− 1

)

corresponding to the normal operating mode of this gas
discharge system.
This equilibrium is stable for Em > Ec. But the deter-

ministic stability of the equilibrium does not guarantee
the normal operation of this system in the presence of
the even small random variations of its parameters.
In [Astrov, 1988] it was shown that weak noise in

the parameter Ec generates large-amplitude stochastic
oscillations and causes the unwanted interruptions of
electric current.
In present paper, following [Astrov et al, 2008], we

fix parameters a = 104, b = 5 · 10−3, τ = 1.5 ·
10−9, Em = 8 · 104, Ec = 4 · 104.

3.2 Analysis of Stochastic Sensitivity of the Model
Consider the model (10) forced by parametric noise.

We replace the constant value Ec by Ec(1 + εξ(t))
where ξ(t) is a Gaussian white noise, ε is the noise
intensity. Taking into account the first-order terms in
the decomposition

1

1 + εξ
= 1− εξ + (εξ)2 + . . .

we get the following stochastic system

Ė = a(Em − E)− bNE

Ṅ =
N

τ

(
E

Ec
− 1

)
− ε

NE

τEc
ξ(t)

. (11)

Under the random disturbances, the random trajectory
leaves the equilibrium and form some stochastic oscil-
lations around it. In Fig. 1, time series N(t) and phase
trajectories of system (11) for three values of intensity
ε are shown. As one can see, despite the determinis-
tic stability of the equilibrium, even extremely small
random perturbations generate large-amplitude oscilla-
tions that destroy normal operation of this system. We
will show that the underlying reason for such a reaction
is the high stochastic sensitivity of this equilibrium.
Using stochastic sensitivity function technique

[Bashkirtseva et al, 2012; Bashkirtseva et al,
2013] one can find the stochastic sensitivity ma-

trix W =

(
w11 w12

w21 w22

)
of the equilibrium. For system

(11), elements of the stochastic sensitivity matrix can
be found explicitly:

w11 =
E2

c (Em − Ec)

2τEm
, w12 =

a(Ec − Em)

2τb
,

w22 =
a(Em − Ec)(τaE

2
m + EmEc − E2

c )

2τ2b2EmE2
c

.

.

For the fixed set of parameters, this matrix has the fol-
lowing elements: w11 = 2.6 · 1017, w12 = w21 =
−2.6 · 1019, w22 = 4.4 · 1025. So, the generation
of large-amplitude oscillations around the equilibrium
can be explained by huge values of the elements of the
stochastic sensitivity matrix.
To suppress these large-amplitude oscillations and re-

turn the system to normal operating mode, we will de-
crease a level of the stochastic sensitivity by the appro-
priate feedback regulator.
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Figure 1. Time series (left) and phase trajectories (right) of stochas-
tic system (11 with a) ε = 1 · 10−11, b) ε = 2 · 10−11, c)
ε = 3 · 10−11.

3.3 Stabilization of the Stochastic System
Consider the stochastic model

Ė = a(Em + u− E)− bNE

Ṅ =
N

τ

(
E

Ec
− 1

)
− ε

NE

τEc
ξ(t)

. (12)

with feedback regulator

u = k1(E − Ē) + k2(N − N̄). (13)

Here, k1, k2 are control parameters.
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Consider a problem of the synthesis of the assigned
stochastic sensitivity matrix W . In accordance with the
Theorem, coefficients k1 and k2 of the feedback regu-
lator (13) are connected (see (8) with elements of the
matrix W by the following equalities:

(α+ ak1)w11 + (β + ak2)w12 = 0

(α+ ak1)w12 + (β + ak2)w22 + γw11 = 0

2γw12 + δ = 0

,

where

α = −aEm

Ec
, β = −bEc, γ =

N̄

τEc
, δ =

(
N̄

τ

)2

.

For the system (12), projective matrices are

P1 =

(
1 0
0 0

)
, P2 =

(
0 0
0 1

)
.

It follows from the attainability condition (9) that
w12 = − δ

2γ = −2.6 · 1019. So, we can not change
the element w12 of the stochastic sensitivity matrix by
our regulator (13).
The condition w11w22 − w2

12 > 0 allows us to as-
sign w11 = 1016, w22 = 1023. It is worth noting
that these values are reduced by one and two orders of
magnitude than the corresponding values in the system
without control.
As it follows from Theorem (case b), the coeffi-

cients of the regulator which synthesizes this assigned
stochastic sensitivity matrix W are k1 = −0.307 ·
103, k2 = −0.113·101. Results of the control based on
this stochastic sensitivity synthesis are shown in Fig. 2.
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Figure 2. Time series of stochastic gas discharge system without
control (grey) and with control (black) for ε = 2 · 10−11.

As one can see, in uncontrolled system, amplitudes
of stochastic oscillations of the variable N exceed 107,
whereas stochastic oscillations in the system with our
regulator lie in the range of 4 · 104. It is worth noting
that this result was achieved because of the essential
decrease of the stochastic sensitivity of the equilibrium.

4 Conclusion
In present paper, we considered a problem of stochas-

tic analysis and control of systems that demonstrate

noise-induced large-amplitude oscillations. To sup-
press the undesirable random oscillations, we elab-
orated and discussed a new constructive control ap-
proach based on the reducing of the stochastic sen-
sitivity by the appropriate feedback regulator. On
the example of the nonlinear dynamical model of
a semiconductor–gas–discharge image converter, we
have shown that using this control approach, one can
suppress unwanted large-amplitude oscillations and re-
turn the system to normal operation with acceptable
low-amplitude oscillations. It is worth noting that the
elaborated technique is readily applicable for the stabi-
lization of operating modes of other, more complicated,
devices.
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