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Abstract
We consider the system that moves in the Newtonian

central force field and consists of a rigid body and a
particle. The particle coasts along on the cable with
both ends placed in the body. We call such cable a
‘leier’. (Dutch maritime term ‘leier’ means the rope
with both fixed ends). We assume the system mass cen-
ter describes circular orbit and the cable length is small
in comparison with orbit radius. We study the particle
motion near the body, the system relative equilibria, the
capture by the leier of a free-moving particle.
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1 Introduction
Space tethered systems is one of the most interest-

ing topics in dynamics. For the first time the motion
of a particle tethered to a spacecraft has been stud-
ied in [Beletsky & Novikova, 1969; Beletsky, 1969].
Presently there are hundreds papers devoted to various
aspects of the motion of such couple. In this paper we
suggest some generalization of the classic tether sys-
tem . We consider a pair composed of a particle and a
dumbbell-shaped rigid body. The particle is tethered to
the body by a weightless nonstretchable cable. Both ca-
ble ends is located in the body. In the most cases we as-
sume the cable is fixed to the dumbbell endpoints. The
particle coasts along on the cable. We call such pair
‘a system with leier constraint’. (The Dutch maritime
term ‘leier’ means the rope with both fixed ends.) We
assume the mass center of the considered system de-
scribes a circular orbit in the Central Newtonian Force
Field, the cable length is small in comparison with the
orbit radius and the cable does not leave the orbit plane.
We study the following problems.
Firstly, we assume the particle does not influence the

dumbbell motion. We describe the particle motion
if the dumbbell axis is directed to the attracting cen-
ter or on a tangent to the orbit. Note that the cable

can be tense (constrained motion) or nontense (free or
unconstrained motion). We deduce the condition for
constrained motion and classify the periodical nonim-
pactive trajectories of the particle that include segments
of constrained and free motions.
Secondly, we assume the particle mass is not small.

In this case we deduce the motion equations of a sys-
tem and condition for constrained motion. We also find
16 relative equilibria of the system and study their sta-
bility. We claim that the dumbbell can be stabilized
somehow by selection of the particle mass and the ca-
ble length.
Thirdly, we consider the body resting in the orbital

frame of reference is equipped with sufficiently long
spar. Two sliders with bobbins fixed to them can move
along the spar. The cable can be winded on the bob-
bins. We claim that almost always the gripper coasting
along on the cable can grasp the particle freely moving
in the vicinity of the body without discontinuities in rel-
ative velocity and acceleration. In other words, we sug-
gest the algorithm for gently (non-impactive) capture
of space garbage by ‘the leier constraint’. We describe
such capture and suggest some scheme for reducing the
necessary cable length.
Fourthly, we study the dumbbell motion being forced

by the particle in some particular cases.

2 Designations and parameters.
Consider a mechanical system consisting of the body

m1m2 and a particle with massm3 (figure 1). In the
general case assume that the body is dumbbell-shaped,
i.e. it is composed of particles with massesm1 and
m2 connecting by weightless rod of length2c. With-
out loss of generality,m1 ≤ m2. Suppose the particle
m3 coasts along on the cable with ends fixed tom1 and
m2. This cable can be called ‘a leier’. Denote by2a
the cable length. LetC be the mass center for consid-
ered system andO1 be the attracting center. SupposeC
moves along the circular orbit, i.e.O1C = r = const
and the particlesm1, m2, m3 do not leave the plane
of this orbit. Moreover assume thata ¿ r . Ev-
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idently, the particlem3 cannot leave the ellipse with
foci in the dumbbell endpoints. The ellipse has eccen-
tricity e = c/ a and semi-axisesa andb =

√
a2 − c2.

Let Oxy be a coordinate system with the origin in the
dumbbell midpoint. Clearly, ifx andy are the coordi-
nates of the particlem3 the inequality

x2 + dy2 − a2 ≤ 0; d = a2
/

b2 (1)

is valid. The motion ofm3 is called the constrained one
if (1) is equality. In this case the coordinates ofm3 can
be determine by formulae

x = a cos γ; y = b sin γ, (2)

whereγ is the eccentric anomaly of the mentioned el-
lipse. If m3 moves inside the ellipse then we say that
the motion is the unconstrained one (or the free one).
Letµ=(m2−m1)/ (m2+m1) andν=m3 /(m2+m1).

Denote byϕ the angle betweenO1C and the rod. It is
clear that the dimensionless parametersµ, ν, e and the
variablesϕ, γ determine the considered system dynam-
ics completely in the case of constrained motion.

3 The motion of the small particle about the rest-
ing dumbbell.

Let the mass ofm3 be so small that it does not influ-
ence the dumbbell motion, i.e.ν ¿ 1. Suppose the
dumbbell is at rest with respect toO1C. It is possi-
ble only if ϕ = 0, ϕ = π (the ‘vertical’ dumbbell)
or ϕ = ±π / 2 (the ‘horizontal’ dumbbell) [Beletsky,
1966]. If the dumbbell is located ‘vertically’ then the
equation of constrained motion for the particlem3 is

(
1−e2cos2γ

)
γ′′+

e2

2
γ′2sin2γ+3 sinγ(cosγ−µe)=0, (3)
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where the prime ‘′’ denotes the derivative with respect
to ‘dimensionless time’τ , τ = G1/2M1/2r−3/2t, G is
the gravity constant,M is the attracting center’s mass.
(3) has Jacobi’s integral
(1−e2cos2γ)γ′2−3 cos γ(cos γ−2µe)=h1 =const
It can be proved that in the considered case the con-

strained motion is possible only if

√
1− e2γ′2 + 2

(
1− e2 cos2 γ

)
γ′+

+ 3
√

1− e2 cos γ(cos γ − eµ) ≥ 0
(4)
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The phase portrait for (3) is represented in figure 2,
where the areas of unconstrained motion are shadowed.
Let us remark that in the considered case there are

two stable (γ = 0 and γ = π) and two unstable
(γ = ±γ∗ = ± arccos eµ ) equilibria of the particle
m3. The stable equilibria correspond with the situa-
tions whenm1, m2, m3 belong toO1C. The dumbbell
and the particle move with the nontense cable if the
equilibria are unstable.
If the dumbbell is stabilized in the ‘horizontal’ equi-

libria then the motion equation for the particlem3 is

(
1−e2cos2γ

)
γ′′+

e2

2
γ′2sin2γ− 3

2
(1−e2) sin2γ=0 (5)

(5) has Jacobi’s integral

(1−e2 cos2 γ)γ′2+3(1−e2) cos2γ = h2 = const. (6)

In this case there are two stable (γ = ±π/2) and two
unstable (γ = 0 andγ = π) equilibria of the particle
m3. If the equilibria are stable thenm1, m2, m3 are
vertexes of some isosceles triangle. If the equilibria are
unstable then the cable is nontense andm1, m2, m3

belong to a ‘horizontal’ straight line crossingO. It can
be proved that in the considered case the constrained
motion is possible only if

√
1−e2γ′2+2

(
1−e2 cos2γ

)
γ′+3

√
1−e2 sin2γ≥0 (7)

From this inequality it follows that in our case the areas
of unconstrained motion have various forms at various
values ofe. So fore ≤

√
2/3 we have the areas shad-

owed in figure 3, for
√

2/3 < e <
√

3/2 we have the
areas shadowed in figure 4, and fore >

√
3/2 we have

the areas shadowed in figure 5.
It is easy to prove that the majority of trajectories for

m3 free motion crosses the ellipse transversely. It fol-
lows from the law of the relative motion near the orbital
station (see for example [Beletsky, 1972]). Thus in
the general case an impact against the cable is a result
of the particle’s free motion [Beletsky, 1995]. How-
ever there exists a set of nonimpactive periodical tra-
jectories that include the segment of free motion [Rod-
nikov, 2006b]. These trajectories can be divided into
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two types. The trajectory of the first type is depicted
in figure 6. It includes the segment of constraint mo-
tion (the upper arcB2B1) and the segment of free mo-
tion (the lower arcB1B2). We call such trajectory ‘the
oval’. The trajectory of the second type is depicted in
figure 7. It includes the segment of constraint motion
(the arcA1B2B1A2) and the segment of free motion
(the ‘hilly’ curve B1B2). We call such trajectory ‘the
horned sickle’. Note some common properties of the
described nonimpactive trajectories. Firstly, both types
exist for all stationary motions of the dumbbell, i.e. at
ϕ = 0,±π/2, π. Secondly,B1 (the point of ‘leaving
from constraint’) andB2 (the point of ‘landing to con-
straint’) are symmetric with respect to vertical axis of
the ellipse. Thirdly, the ‘oval’ trajectory can be both
convex and concave. Note also that there exist the
other trajectories that include the segments of free mo-
tion with nonimpactive ’landing to constraint’. These
trajectories are not periodic and symmetric as they re-
sult in impact against the cable. They exist only if the
dumbbell is ‘horizontal’ for a denumerable set of ec-
centricitye values.



4 Relative equilibria of the dumbbell with the
counter-balance.

Supposem3 is not small. In this case the particle is an
original counter-balance for the dumbbell. Lagrangian
for relative motion of the considered system has a form
[Rodnikov, 2004; Rodnikov, 2006a]

L = L2 + L1 + L0, (8)

where

L2 =
1
2

{
ϕ′2 + κ

[(
1− 2eµ cos γ + e2 cos2 γ

)
ϕ′2+

+2
√

1− e2 (1−eµ cos γ) ϕ′γ′+
(
1− e2 cos2 γ

)
γ′2

]}
,

L1 = κe cos γ (e cos γ − 2µ) ϕ′,

L0=
3
2

cos2ϕ+κ

{
9
8
e2cos2ϕ− 3

2
eµ cosγ+

3
8
e2cos 2γ−

−3
4
eµ

[(
1−√1−e2

)
cos(2ϕ−γ)+

(
1+
√

1−e2
)
cos(2ϕ+γ)

]
+

+
3
16

[(
1−√1−e2

)
2cos(2ϕ−2γ)+

(
1+
√

1−e2
)
2cos(2ϕ+2γ)]

}

κ =
ν

e2(1− µ2)
.

Hence we have Jacobi’s integral

L2 − L0 = h. (9)

The constrained motion is possible only if

√
1− e2(1− eµ cos γ)(ϕ′ + 1)2+

+2(1− e2 cos2 γ)(1 + ϕ′)γ′+
√

1− e2γ′2−

−3
2
(1−e2)sin2γsin2ϕ+

√
1−e2

2
[3cos2ϕcos2γ+

+1− eµ cos γ(1 + 3 cos 2ϕ)] ≥ 0

(10)

We claim that there exist 12 or 16 relative equilibria
of the system with Lagrangian (8). These equilibria
can be divided into 4 groups.
The first group includes four ‘vertical-vertical’

equilibria determined by formulaeϕ1 = 0, γ1 = 0;
ϕ2 = π, γ2 = 0; ϕ3 = 0, γ3 = π; ϕ4 = π, γ4 = π. In
this casem1, m2 andm3 belong to straight line cross-
ing the attracting center. The first and the second equi-
libria are stable ifν(µ + e2µ − 2e) < e(1 − µ2) and
unstable otherwise. The third and the fourth equilibria
are stable at all values ofe,µ, ν.
The second group includes four ‘horizontal-

horizontal’ equilibria determined by formulae

ϕ5 =π/2, γ5 =0; ϕ6=−π/2, γ6 =0; ϕ7 =π/2, γ7 =π;
ϕ8 =−π/2, γ8 =π. In this casem1, m2 and m3

belong to straight line that is perpendicular toO1C,
the cable is not tense.
The third group includes four ‘vertical-

horizontal’ equilibria ϕ9 =0, γ9 =arccos eµ;
ϕ10 =π, γ10 =arccos eµ; ϕ11 =0, γ11 =− arccos eµ;
ϕ12 =π, γ12 =− arccos eµ. In this case dumbbell is
‘vertical’, the particlesm1, m2, m3 are a vertexes of
some triangle, the cable is not tense.
If µ = 0 (m1 = m2) then the fourth group

includes the equilibria ϕ13 = π/2, γ13 = π/2;
ϕ14 = −π/2, γ14 = π/2; ϕ15 = π/2, γ15 = −π/2;
ϕ16 = −π/2, γ16 = −π/2; that can be called
‘horizontal-vertical’. Here dumbbell is ‘horizontal’,
the particlesm1, m2, m3 are a vertexes of an isosceles
triangle, the cable is tense.
If µ 6=0 ‘horizontal-vertical’ equilibria

do not exist. Nevertheless, if
ν(µ + e2µ− 2e) < e(1− µ2)

then the fourth group includes 4 equilibria which can
be called ‘inclined-vertical’. They are found by the
following procedure. Separate the area of admissible
e, µ, ν into surfaces

ν =
e(1− µ2)

√
(1 + k)(2− e2 + ke2)

2
[
(1 + ke2)µ− e

√
(1 + k)(2− e2 + ke2)

]

Letϕ∗be an acute angle.Ifk=cos2ϕ∗ then the formulae

ϕ13 = ϕ∗, γ13 = − arccos
cosϕ∗√

1− e2 sin2 ϕ∗

ϕ14 = ϕ∗ − π, γ14 = − arccos
cos ϕ∗√

1− e2 sin2 ϕ∗

ϕ15 = −ϕ∗, γ15 = arccos
cosϕ∗√

1− e2 sin2 ϕ∗

ϕ16 = π − ϕ∗, γ16 = arccos
cos ϕ∗√

1− e2 sin2 ϕ∗

are valid. Note also that the cable is tense for such
equilibria.
The equilibria from the second group, the third

group or the fourth group are unstable. Fix-
ing the particlem3 on the cable we can stabilize
‘horizontal-vertical’ and ‘inclined-vertical’ equilibria if

(1− 2e2 + µ2e4)ν − e2(1− µ2) > 0
The last inequality can be deduced from the Beletsky
theorem [Beletsky, 1966].

5 The algorithm for a capture of a free particle.
Let the body be at rest in the orbital frame of refer-

ence again. For example, the dumbbell can be oriented
‘vertically’. Suppose the body is equipped with a suf-
ficiently long spar. Two sliders can move on the spar.
The cable can be winded on the bobbins fixed to the
sliders. The gripper coasts along on the cable. We
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consider the case of ‘horizontal’ spar (figure 8) and the
case of ‘vertical’ spar (figure 9). In these figuresO is
the body,AB is the spar,C andD are the sliders,O1

is midpoint of a segmentCD, E andF are the bob-
bins,G is the gripper, axesOy directs to the attracting
center. Note that the depicted schemes are conditional.
The bobbins can be fixed to different spacecrafts mov-
ing along concentric orbits (the system similar to ‘the
space elevator’) or along the same orbit (a so-called
‘monkeys-bridge’ [Burov, 2003]). Suppose we have
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detected an uncontrolled particleH that approaches
the bodyO. Clearly, if the sliders do not move and
the bobbins do not rotate then the gripper cannot leave
the ellipse with foci inC andD. Using the formulae
from the [Beletsky, 1972] and from previous chapters,
we can determine the positions for the pointsC andD
and the length of the cable’s unwound part so that the
part of the particle’s trajectory inside the ellipse is a
free-motion segment of an non-impactive periodic tra-
jectory. Evidently, there are two ways to forceH to
move periodically, namely ‘the libratory’ type (figure
10) and ‘the rotary’ type (figure 11). Thus the follow-
ing sequence of steps leads to the such capture of the
particleH.

• The gripper’s initial position (the pointK) is cal-
culated from the orbital parameters ofH; the grip-
per is kept in this position for a some time.

• The gripper coasts along on the tense cable with
fixed sliders and bobbins until the gripper meets
theH (the pointM ); then the gripper ‘leaves the
constraint’, i.e. the cable weakens. ‘The libratory
motion’ begins with zero velocity and a certain ini-
tial impulse is necessary for ‘the rotary’ motion.

• After the gripper meets theH, they move together
freely and at pointL the coupleG − H nonim-
pactively ‘retrieves’ the constraint.

• Constrained motion of the couple continues (the
bobbins are fixed and the cable is stretched) till the
pointM is not achieved (trajectoryL−N − L−
P −M −K−M or L−K−M ); then the couple
again moves freely fromM to L, etc.

This algorithm possesses the following important fea-
tures. Firstly, at any instant of time during the motion
the velocity and the acceleration of the objectH change
continuously; secondly, the gripper goes by inertia (an
initial impulse may be required); thirdly, the process of
joining should not be instantaneous. We claim that the
capture is impossible only for two types of the particle
orbits. The gripper cannot reach the particle if its orbit
is circular and if3(a0 − r) = ±4a0ε, wherea0 and
ε are the major semi-axis and eccentricity of the par-
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ticle’s orbit. The capture details is described in [Rod-
nikov, 2006c].
Let us remark that for many orbits a very long cable

may be required. The most complicated case arises for
‘the libratory’ type. Note however that the ends of the
cable do not need to be fixed to the foci of the ellipse.
Only one condition must be held: during the motion
with the tense cable the branches of the cable must be
always directed toward these foci. We suggest an up-
dated algorithm that allows to reduce the required ca-
ble length in many times. This algorithm can be repre-
sented by the following sequence of steps (figure 12):

• The instant of time when the gripper is pushed
from the spar (the pointK1) is so chosen that
the gripper arrives at the pointM1 simultaneously
with the particle (the particle’s and gripper’s ve-
locities must coincide at this point).

• The particle and the gripper travel together and
land on the constraint at the pointL. The cap-
ture should be realized during this motion. The
branches of the non-tense cable trace the motion
of the pointG.

• The particle and the gripper continue their con-
strained joint travel along an arc of the ellipse until
they reach the pointN . The sliders are moving and
the bobbins are rotating. The branches of the cable
are directed toward the foci of the ellipse.

• The sliders and bobbins are fixed. A libratory mo-
tion along the arc of the ellipse between the points
N andN1 occurs.

6 On the dumbbell motion being forced by the
particle

Suppose the massm3 is small, i.e. ν ¿ 1, but the
dumbbell is not at rest. It is easily shown that if the
dumbbell’s initial position is quasi-horizontal then the
particle motion along the leier force the upturning of
the dumbbell. The further motion of the dumbbell be-
longs to one of three types. There are ‘the libratory
motion’ about the ‘vertical’ equilibria, ‘the rotary mo-
tion’ about mass center, the complicated ‘tumbling mo-
tion’ consisting of libratory and rotary segments. Let us
remark that the dumbbell tends to librations about its
‘horizontal’ equilibria for some singular initial values
of (γ′, γ).

It is not hard to prove that ifh < 3
8κ(5e2 − 2) then

only ‘the libratory motion’ is possible. Hereh is the
constant of Jacobi’s integral (9). For instance, the libra-
tory motion is observed for any initial value ofϕ and
zero initial velocities if initial value ofγ is about±π/2.
It can be shown numerically that ‘the rotary motion’ is
guaranteed only if the initial value of|γ′| is sufficiently
big.
Note that ‘the tumbling motion’ is a set of right-hand

and left-hand rotations with close to flat angles. Con-
sider a single rotation from this set. Letϕ′1, ϕ1, γ

′
1, γ1

be values ofϕ′, ϕ, γ′, γ in the beginning of this rota-
tion. It is clear thatϕ′1 ≈ 0 andϕ ≈ ±π/2.(Without
loss of generality it can be assumed thatϕ ≈ −π/2).
It is obvious that the motion in the vicinity of ‘horizon-
tal’ equilibria determine the direction of the dumbbell’s
further rotation. Substituting−π/2+

√
κψ for ϕ in the

dumbbell’s motion equation we obtain

ψ′′ − 3ψ +
√

κD = 0, (11)

where

D =
√

1− e2γ′′ − e2 sin 2γ · γ′ − 3
2
√

1− e2 sin 2γ,

Here we are restricted to a case of symmetric dumb-
bell (µ = 0 ⇔ m1 = m2) and neglect the terms
of order higher than

√
κ. Using (5) and (6) we get

D = f(γ, h2), whereγ = γ(τ, γ1, h2) is the solution
of (6) andh2 depends onγ1 andγ′1.
Solutions of (11) have a formψ(τ) = p(τ) + q(τ),

wherep(τ) is a periodic function and

q(τ) =
1

2
√

3

(
C1e

τ
√

3 + C2e
−τ
√

3
)

,

C1 = κ−1/2(
√

3ϕ1 +
√

3π/2 + ϕ′1)−
√

κA,

A =
∫ +∞

0

e−ξ
√

3f (γ(ξ, γ1, h2), h2) dξ

Clearly, if C1 > 0 then the dumbbell will turn coun-
terclockwise and ifC1 < 0 then the dumbbell will turn
clockwise. Certainly, this criteria is valid only if the in-
equality (10) is fulfilled during the considered rotation.
If C1 = 0 then the dumbbell remain in the vicinity of
horizontal equilibria, i.e. we have an asymptotic mo-
tion of the dumbbell.
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In particular, ifϕ′1 = ϕ1 = 0, i.e. the dumbbell is
precisely horizontal in the beginning of considered ro-
tation, then the equalityA = 0 is the equation of a
curve dividing the plane(γ1, γ

′
1) into the areas of left-

hand (L) and right-hand (R)rotations (figure 13. Here
e = 1/2).
The similar curve forκ = 0.01, ϕ′1 = 0, ϕ1 = −9003′

is depicted in figure 14. In figures 13,14 the shadowed
area corresponds to the motion with the weakened ca-
ble.
Finally note that the infinite integralA is reduced up

to definite. For instance, ifh2 > 3(1− e2) andγ′1 > 0
then we have

A=
1

1−e−T
√

3

∫ π+γ1

γ1

exp

(
−
√

3
∫ γ

γ1

dξ√
r(h2,ξ)

)
f(γ, h2)√
r(h2,γ)

dγ,

where

r(h2, γ) =
h2 − 3(1− e2)
1− e2 cos2 γ

, T =
∫ π

0

dγ√
r(h2, γ)

7 Conclusion
In this paper the motion in the Newtonian Central

Force Field of the system with ‘the leier constraint’,
i.e. the system consisting of the dumbbell-shaped rigid
body and the particle coasting along on the cable with
ends fixed to the dumbbell is considered.
Firstly, the motion of a small particle along the leier

fixed to the dumbbell resting in the orbital frame of ref-
erence is studied.
Secondly, the relative equilibria of the system are

found. The conditions of their stability is deduced.
Thirdly, the algorithm for the capture of the freely

moving particle by the gripper coasting along on the
leier is suggested.
Fourthly, the initially quasi-horizontal dumbbell’s ro-

tation being forced by the small particle is studied.
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