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Abstract 
Parametric analysis of the behavior of an aerodynamic 

pendulum is carried out, motivated by the study of a small 
wind power generator with a vertical axis. A mathematical 
model for the free rotation of this pendulum is constructed, 
leading to a system of nonlinear ODEs and transcendental 
algebraic equations. A qualitative analysis of the phase 
portrait is carried out: all equilibrium solutions are found, 
their stability is studied, characteristics of a stable 
rotational regime are determined; and domains of 
attraction for equilibrium solutions and for the rotational 
regime are also found. The mathematical model is used to 
study the operational regimes of the system “wind turbine 
+ generator”. Estimations of the trapped power as a 
function of the external load in the circuit are obtained; 
optimal values for the power and the load are found. A 
pitch angle control mechanism is proposed in order to 
increase this power. 
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1 Notation  
β  = pitch angle (the angle between the plate and the plane 
orthogonal to the holder); 
r  = length of the holder; 
2l  = width of the plate (chord); 
h  = height of the plate;  

2S l= h  = surface area of the plate; 
OJ  = moment of inertia of the pendulum about the axis of 

rotation; 
BJ  = moment of inertia of the pendulum about the vertical 

central axis of the plate; 
1m , , i  = diagonal elements of the central tensor of 

apparent additional masses of the plate; 
2 0m =

2
1 sinOJ J i m r β= + +  = the moment of inertia of the 

system about the rotation axis; 
ρ  = density of air; 
V  = wind velocity vector; 

N= −U V V , where  is the velocity of the center of 
plate ; 

NV
N

α  = the effective angle of attack (this is the angle between 
the vector U  and the plate, it is called “angle of attack” 
below); 

( ) /e AFα = r  = shift of the center of pressure F ; 
( )xC α , ( )yC α  = coefficients of the drag and the lift 

forces; 
20.5 ( )xX C SUα ρ= ,  = magnitudes of 

the drag and the lift; 

20.5 ( )yY C SUα ρ=

C  = coefficient of electro-mechanic coupling; 
ϑ  = angle between the holder and the vector ; V
ϑ  = angular velocity of the rotation of the pendulum (here 
a dot denotes the derivative with respect to time); 

/Vt rτ =  = dimensionless time; ; /u U V=
/r Vϑ ω ϑ′ = =  (prime denotes the τ -derivative); 

3

JA
lhrρ

= ; ;31 lhr
JA B

ρ
=  ;1

A
a =  ;1

1
1 A
a =  1mb

lhrρ
= ; 

2

Cc
V lhrρ

=  = dimensionless parameters. 

 
 
2 Introduction 

Mankind has been using wind power for ages. 1920s 
and 1930s saw a sharp increase of interest in wind power 
stations, both in science and engineering, against the 
backdrop of rapid development in research of propelled 
aviation (for both airplanes and helicopters). A recurrence 
of this interest became a feature of the last decades, as 
more attention is paid to ecology and sustained 
development. We can now observe increased numbers of 
new wind power stations and more use of wind energy, as 
well as larger amounts and volumes of research 
publications on the subject. While a comprehensive review 
of such literature is beyond the scope of the present work, 
we should mention a few examples [Gorelov, 2003; 
Kharitonov, 2006; Klimas and Sheldahl, 1978; Leishman, 
2002; Paraschivoiu, 1983]. While most authors engage in 
detailed descriptions of the units, we would like to present 
a sufficiently simple model which can be used not only to 
adequately describe the observed phenomena and effects, 
but also to optimize the parameters of the construction. 

In our approach, an aerodynamic pendulum is 
considered as a model for the principal element of the 
wind-capturing unit of a wind generator for a Vertical Axis 
Wind Turbine (VAWT). A VAWT has a number of 
advantages over the horizontal axis wind turbine. For a 
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VAWT an orientation device is not required; the generator 
can be set on the ground; the construction is simpler; and 
gyroscopic loads are lower. The invention of Darrieus 
turbine in 1926 in France can be marked as the beginning 
of the modern age of scientific research on VAWT. Since 
then the VAWT have been actively studied in many 
countries (see for example [Dosaev, Kobrin, Lokshin, 
Samsonov and Seliutsky, 2007; Gorelov, 2003; Klimas 
and Sheldahl, 1978; Lokshin and Samsonov, 1996; 
Lokshin and Samsonov, 1998; Paraschivoiu, 1983]). Some 
problems of motion of the aerodynamic pendulum were 
discussed at the 1st and 2nd ENOC ([Lokshin, Okunev, 
Ryzhova and Samsonov, 1996; Parshin and Samsonov, 
1994; Parshin and Samsonov, 1994]). 

We consider an aerodynamic pendulum with a vertical 
rotation axis in a steady horizontal wind flow as the model 
of the wind-receiving element of a straight winged 
VAWT. 

 

 
Fig 1. The aerodynamic pendulum (top view) 

 
Assume that the pendulum consists of a thin 

rectangular flat plate and a horizontal weightless holder 
, which is much longer than the width of the plate. 

The plate is attached to the holder at its geometric center 
, so that the plate stays vertical and forms the angle 

ON

N β  
with the vertical plane orthogonal to the holder (Fig. 1). In 
the first part of this paper we assume that constβ ≡ , so 
that the plate and the holder form a single rigid body that 
can rotate about the fixed vertical axis . The center of 
mass of the plate coincides with its geometric center . 

O
N

Suppose that the flow around the plate is planar. 
Assume that the aerodynamic force acting on the plate 
consists of two components. The quasi-steady component 
is determined in stationary wind tunnel experiments (e.g. 
Fig. 2, where ( )e α  is given for 2r l= ) and the non-steady 
component is described by the tensor of apparent 
additional masses. 

 

 
Fig. 2. Functions ( )xC α , ( )yC α , ( )e α  

for flat aspect-ratio-8 plate ([Tabachnikov, 1974]) 

3 The mathematical model 
Since the system has just one degree of freedom, we 

take ϑ  as the generalized coordinate. Then the 
dimensionless Lagrange equations for the system “plate + 
continuum” are as follows [Dosaev, Kobrin, Lokshin, 
Samsonov and Seliutsky, 2007; Lokshin, Okunev, 
Ryzhova and Samsonov, 1996; Lokshin, Privalov and 
Samsonov, 1986; Lokshin and Samsonov, 1996; Lokshin 
and Samsonov, 1998;]: 

ϑ ω′ =  
2

2

( ( )(sin( ) ( ) cos )

( )(cos( ) ( )sin ))

( cos( 2 ) 0.5 sin(2 ))

y

x

A u C e

C e

b c

ω α α β α α

α α β α α

ω ϑ β ω β ω

′ = + −

− + +

+ + −

−

+

−

(1)

Here  and u α  are determined from the kinematic 
relations: 

cos cos sin( )
sin sin cos( )
u
u

α ω β ϑ β
α ω β ϑ β

= + +
= − + +

 (2)

Terms, containing the coefficient , are due to the 
effect of apparent additional masses. The term 

b
cω−  

models the load upon the axis of rotation due to the 
operation of the generator. 

 
 

4 Equilibrium positions 
Consider equilibrium solutions of the system (1). Using 

(2) we obtain that the following conditions are to be 
satisfied in a stationary point (values of variables in a 
stationary point are marked with “0”): 

0 0ω = ; u0 1= ; 0 0 / 2ϑ α β π+ + = ; 

0 0 0 0

0 0 0 0

( ) ( )(sin( ) ( ) cos )

( )(cos( ) ( )sin ) 0
y

x

C C e

C e
τ 0α α α β α α

α α β α α

= − + −

+ + + =

+ (3)

For example, if we take the aerodynamic functions 
from Fig. 2, ( )Cτ α  is as follows (Fig. 3): 

 
Fig. 3. C ( )α  for 0β = , e  ( ) 0α ≡τ

To study the stability of equilibrium positions consider 
linearized equations: 

ϑ ω′Δ = Δ  ⎧
⎨
⎩ A p qω ω ϑ′Δ = − Δ − Δ , where 

0 0 0( ) sin( ) sin( )p C bτ α β α α β c′= − + − − + ; 

0( )q Cτ α′= − . 
If , , then the equilibrium solution of the 

nonlinear system (1) is asymptotically stable. If 
0p > 0q >

0p <  or 
0q < , it is unstable. 
Consider the configuration for which the plate is 

orthogonal to the holder (i.e. 0β = ), then the position “up 
stream” (which corresponds to the point )0,(π  of the 
phase plane) is one of the steady states, that is easy to 
notice from (3), taking into account aerodynamic 



properties of a symmetric plate. Let’s study the stability of 
this particular equilibrium in assumption that 0)( ≡αe . 
We have: 

( / 2)p C bτ π′= − + + c
)

; 
( / 2q Cτ π′= − − . 

( / 2) ( / 2) ( / 2)y xC C Cτ π π π′ ′− = + . 
So for the plate which aerodynamic functions are 

shown at Fig. 2, we obtain that  (see Fig. 3) and the 
sign of  depends on the value of the sum . When 

, the point ( ,π a source. When 
(C bτ′− −  sink or a stable node. 

0q >
p (b c+ )

/ 2)  is 
cπ < +  it is a

)

0 (b c Cτ π′≤ + < − − 0)
/ 2)

If , the point  is a weak 
focus. To solve the question of the stable cycle existence 
we find the sign of the 1

( / 2b c Cτ π′+ = − − ( , 0)π

st Liapunov value  for this point 
(according to the technique described in [Bautin and 
Leontovich, 1990]). After calculation we obtain the 
following expression: 

1L

1
( / 2)1 1

16 ( / 2)( / 2)
C AL

CC A
τ

ττ

π
ππ

⎛ ⎞′′′ −
= − +⎜ ⎟⎜ ⎟′− −′− − ⎝ ⎠

 

One could see: when  and 
 (that is satisfied in our case, Fig. 3), we 

have . Hence the considered weak focus is stable, 
and such a value  exists, that if , then there is 
a stable cycle in the neighborhood of the point . In 
other words for some values of the sum  there is a 
stable cycle around the point . It is also in 
agreement with numerical calculations of face trajectories. 

( / 2) 0Cτ π′ − <
( / 2) 0Cτ π′′′ − >

1 0L <
p 0p p< <

( , 0)π
(b c+ )

( , 0)π

 
 

5 Existence of auto-rotation 
Existence of rotational modes for the pendulum motion 

is of special interest, because a stable rotational mode can 
serve as an approximation to the operating regime of a 
wind turbine. 

A rotational mode of motion corresponds to a periodic 
trajectory of the system (1)-(2) encircling the phase 
cylinder. For such a trajectory, the following property 
holds: any value 1ϑ  satisfies the equation 

, meaning that 
1

1

2

( , ( )) 0d
ϑ π

ϑ

ω ϑ ω ϑ ϑ
+

′ =∫ 1 1 2ϑ ϑ ϑ ϑ
ω ω

= =
=

π+
. 

The following claim takes place for the system (1)-(2) 
(see [Bautin and Leontovich, 1990]): 

►Let the following equation holds for some value 
: 0 0constΩ = ≠

1

1

2

0( , ) 0d
ϑ π

ϑ

ω ϑ ϑ
+

′ Ω =∫  (4)

Then for a sufficiently large value of A  the system (1)-
(2) has a periodic phase trajectory initiated from the 
straight line .◄ 0ω = Ω

For  it can be shown that there are at least two 
values  (with different signs) satisfying (4), if 
quantities 

( ) 0e α ≡

0Ω
β  and  satisfy the inequality c

/ 2

0
/ 2

0

3[cos 2 ( ( )sin 2 ( ) cos 2 )

( ) ] 0

y x

x

C C

C d с

π

π

dβ ϑ ϑ ϑ ϑ ϑ

ϑ ϑ π

⋅ − −

− − >

∫

∫
 (5)

For specific functions ( )xC α , ( )yC α  (as in Fig. 2) (5) 
assumes the following form: 

3[1.237 cos 2 1.196] 0сβ π− − >  (6)
Thus, (6) is a sufficient and realizable condition for 

existence of rotational modes in the motion of the 
pendulum in question, with large moment of inertia (when 

( ) 0e α ≡ ). Moreover, these rotational modes will be 
attracting. 

Consider the equality (4) as an equation for 0Ω . If 
0β = , an approximate solution can be found for the case 

0 1Ω > :  (see [2]). It can be shown, 
that 

2
0 0.5 (0) / (0)y xC C′Ω ≈

0Ω  is an even function of β  for small β  (for 0b =  
and ( ) 0e α ≡ ). 

 
 

6 Numerical analysis of rotational modes and domains 
of attraction for β = 0  and various values of  c

For the plate described above (Fig. 2) in the case 
0β = , let the system be characterized by the fixed 

parameters A  and b . Here we take the following values 
8.14A = , 0.1 / 2b π= . For example, these values 

correspond to the case, when , , 
, 

1.2 mr = 0.06 ml =
0.96 mh = 21kg moJ = ⋅ , , 

, . As estimates for  and 
 we take: , . Let 

. 

20.0125kg mi = ⋅

1 0.0136 kgm = 31.25kg / mρ = 1m
i 2

1m hρπ= l h l40.0625i ρπ=
10 m/sV =

Consider some features of the phase portrait of the 
system (1)-(2). Let's start by looking for periodic 
trajectories. 

First assume 0c = . It is possible to show numerically, 
that (4) has a unique nonzero root  (for sufficiently 
large 

0Ω
A , the lines 0ω = ±Ω  give birth to attracting 

periodic trajectories) and that there are no other periodic 
trajectories, not just originating from straight lines, but 
also originating for other reasons. Besides, for 0c =  there 
exists an unstable cycle . Inside this cycle Γ  there are 9 
rest points, two unstable cycles and one stable one. 
Outside  there is only one equilibrium point – the saddle 
point . All phase points lying outside of the cycle  
belong to the domain of attraction of one of the periodic 
trajectories found. 

Γ

Γ
(0, 0) Γ

As the coefficient c  increases, the unstable cycle  
expands and bifurcates into two unstable periodic 
trajectories, and this bifurcation is not described by the 
origination of periodic trajectories from straight lines. 

Γ

To explain of the further evolution of the phase portrait 
with the parameter  we give a qualitative picture of the 
dependence between the values of the coefficient c  and 
the values 

c

0
(0)

ϑ
ω ω

=
=  at the periodic phase trajectories 

(Fig. 3). We give a schematic picture of the zones of 
attraction of steady periodic trajectories. Unstable periodic 



trajectories (thin lines) limit domains of attraction of the 
stable ones (bold lines). 

 

 
Fig. 3. Diagram of values 

0ϑ
ω

=
 at periodic trajectories 

as functions of  c
 
Note that the similar figure was obtained [Lokshin, 

Okunev, Ryzhova and Samsonov, 1996] for aerodynamic 
pendulum for which the plate is fixed along the holder. 

Fig.4 shows, how does the value  (which is 
responsible for the appearance of the low-

mc
ω  unstable 

periodic trajectory) depend on the parameter 
(dimensionless additional masses). b

 

 
Fig. 4. Diagram of value  as function of b  mc

 
 

7 Average trapped power 
Denoting the dimensionless aerodynamic torque in the 

system (1) by ( , )q ϑ ω , one can rewrite the equations as 
follows: ϑ ω′ = ; ( , )A q cω ϑ ω ω′ = − . 

Introduce the function 
2

0
( ) ( , ) / 2f q d

π
ϑ ϑ πΩ = Ω∫ . 

Then the equation (4) can be rewritten as 
0 0( ) 0f cΩ − Ω =  (7)

Consider the stable periodic trajectory of the system 
(1)-(2) that is originated from the straight line . 
Average trapped power in the corresponding regime is 

0 0ω = Ω >

23

0
( , ) / 2P V lh q d

π
ρ ω ϑ ω ϑ π= ∫ . Its magnitude is 

determined by the parameters β  and c . Let us estimate 

this power as . The value  and the 
behavior of the function  are also determined by 

3
0 0( )P V lh fρ= Ω Ω 0Ω
( )f Ω β  

and , so  is a function of c P β  and . It is interesting to 
find the maximum of the function 

c

0 0( , ) ( , ) ( ( , ))p c c f cβ β= Ω Ω β . Using (7), it can be 
written as follows 

2
0( , ) ( , )p c c cβ β= Ω  (8)

Fix β  and determine the value of  for which the 
maximum of 

c

0 0( , ) ( )p c fβ = Ω Ω  is achieved. As 0Ω , for 
fixed β , is a function of  as given by (7), the search for 
the optimal  can be replaced by searching for the optimal 
value 

c
c

*Ω  of variable 0Ω . This value is determined from 
the equation 

*

( *) * 0dff
d Ω=Ω

Ω +Ω =
Ω

 (9)

Then , the optimal value of the coefficient , is 
given by the expression: . 

*c c
* ( *) /c f= Ω Ω*

For example, for 0β =  in the system with fixed 
parameters as outlined above, a numerical solution of (9) 
gives * 4.18Ω ≈ , that is  1/s. At this regime we 
have 

* 34.8ϑ =
* 0.056C ≈  2kg m⋅ /s, . 68WP ≈

Alternatively, the equation (9) allows for an 
approximate analytical solution (for ) at * 1Ω > 0β =  [2]: 

2 (0)
( *)

6 (0)
y

x

C
C
′

Ω =  (10)

In the considered case we have ' (0) 4.1826yC = , 
, and the formula (10) gives the value (0) 0.04xC =

* 4.17Ω = , corresponding to  1/s. * 34.75ϑ =
A direct search for  by determining the values of  

for various values of c  via numerical integration of the 
equations of motion gives 

*c P

* 4.14Ω ≈ , 
, . Comparison of the 

results shows that in practical tasks it is sufficient to 
maximize the function . 

2* 0.058kg m / sC ≈ ⋅ 70WP ≈

P
Note: numerical calculations showed that the domain 

of attraction of the obtained stable periodic mode is limited 
by an unstable periodic trajectory in the neighborhood of 
the straight line 3.5ω = . 

The approximate values of maximum power at the 
rotational mode, obtained numerically, are given in the 
Table 1 for several values of pitch angle β  and for wind 
speed 10V =  mps. 

From the data of the Table 1 we can conclude that the 
output power depends essentially on the pitch angle. Note 
that for values of β  large enough, the sufficient condition 
(6) of the existence of a rotational mode becomes 
unrealizable. Numerical integration of the equations of 
motion showed that for 7β = − °  and , an attracting 
periodic trajectory still exists, whereas for 

0c =
10β = ± °  there 

no longer are any periodic trajectories. 
 
Table 1. Estimations of maximum trapped power 

Angle β  
[degree] 

*C  
[ ] 2kg m / s⋅

*ϑ  
[1/s] 

*P  
[W] 

-5 0.011 23.0 6 
-4 0.022 25.1 14 
-3 0.031 29.3 27 
-2 0.040 34.0 46 
-1 0.054 34.4 65 
 0 0.058 34.5 70 
 1 0.049 34.4 59 
 2 0.038 34.3 38 
 3 0.010 29.6 8 

 



5 P h angle control 
ossibility of increasing the average 

tra

itc
We investigate the p

pped power by varying the pitch angle β . For 
simplification we consider the case 1 0m = . Rewrite the 
equations of motion for the case of variable β : 

;ϑ ω′ =  
2 ( , , ) ( , );au M aс aω ϑ ω β ω β σ′ = − + Φ  

;σβ =′  
2 2

1 1u 1( , , ) ( ) ( , , ) ( ) ( , ),a M e au M aс a aσ ϑ ω β α ϑ ω β ω β σ′ = − − + − + Φ

(11)

 
wh e 

C C
er

( ) sin( ) ( ) cos( );y xM α α β α α β= + − +  

1 ( ) cos ( )sin .y xM C Cα α α= +  α
(12)

 
( , )β ϑΦ  is the control torque, it is assumed to have the 

following form 1 2( , ) ( *) ( *).K Kβ ϑ β β σ σΦ = − + −  Here 

1K  and 2K  are constant values; *( )β ϑ  and *( )σ ϑ  are 
 assign  functions which we w suppo  the 

control. Now we discuss the way of choosing *( )
the ed ant to rt using

β ϑ  and 
*( )σ ϑ . 

umAss e  is fixed. Then due to (8) the task of 
inc f 

c
reasing o the average trapped power is reduced to 

increasing of the average angular velocity of the rotational 
mode, which in its turn is reduced to the increase of the 
torque. We would like to increase the aerodynamic torque 

( , , )M ϑ ω β . To simplify the realization of the control we 
choose β  to be a function of ϑ only. 

We lustrate this approac  to seil h lection of β  in a 
simplified setting, where we assume ω = Ω

constΩ =  is the average angular velocity of tational 
ained. It can be shown that the dimensionless 

aerodynamic torque can be written as follows: 

, with 

mode obt
 the ro

2 2( sin ) cos ( ( ) cos (y xM C C )( sin ))ϑ ϑ α ϑ α= Ω+ + − ϑΩ+

where cos
sin

arctg ϑα β
ϑ

= − +
Ω+

. 

First we search for the value *α α=  where the 
maximum of M  is achieved. Setting to he derivative 
of 

 zero t
M  with respect to α , we obtain: 

s ( )( sin ) 0y xC C( )coα ϑ α ϑ′ ′− Ω

Assume that 
+ = . 

( ) (0)y yC Cα′ ′≈ ; ( ) (0)x xC Cα α′ ′′≈ . These 
sim  based on the pecific propertieplifications are  s s of the 
aerodynamic functions: ( )yC α  is close to a linear function 
and ( )xC α  is close to a quadratic function when 
| | 1α <  (for the functions shown in Fig. 2 

ith these assumptions the solution of the last 
 is given by the formula: 

mα <<
). W

equation
0.2mα =

(0)co
* yCα

s
(0)( sin )xC

ϑ
ϑ

′
=

′′ Ω +
 (13)

If the condition | * | mα α>  holds, we set *α  equal   to

mα−  or mα , respectiv
ow e can approxim

ely. 
N w ately solve for the desired *β  

(14)

This function is piecewise differentiable, so

via the formula:  
cos*( ) *( )

sin
ϑβ ϑ α ϑ
ϑ

= − +
Ω+

 

 * ( )σ ϑ  
can be viewed as a piecewise continuous function. 

whichLet’s consider an example, for  
20.17 kg m /sC = ⋅ , 3.2Ω = . We choose 1K 1000= , 

2 20= , and we assume, that the value of ( , )K β ϑΦ  is 
if *) ( *)β σ σ+ − > e 

1
bounded by 1, i.e. K Kβ − , we tak

β ϑ
 1 2( 1

( , )Φ = , and if 1 2( *) ( *)K Kβ β σ σ− + − < hen 
we take ( , )β ϑ

1  t− ,
1Φ = − al mode, 

 trapped ual to 
115W, th ut to control is about 30W. The 
corresponding periodic trajectory of the system (11)-(12) 
is shown in Fig. 4. 

The pitch angle and the angle of attack as functions of 
the angle 

. At the obtained rotation
the average power is approximately eq

e power inp

ϑ  in this regime are shown in Fig. 5. The 
domain of attraction of the obtained trajectory is bounded 
below by an unstable periodic solution with 2.75ω ≈ . 

 

 
Fig. 4. Attracting periodic trajectory for variable β  

 

 
Fig. 5. Dependence of angles  on the angle ϑ   and βα

 

i nd de ed 
r the principal element of the wind-capturing 

Conclusion 
 this paper, an aerodynam c pe ulum is consi rIn

as a model fo
unit of a wind generator for a Vertical Axis Wind Turbine 
VAWT. 

Existence of auto-rotational regimes is studied 
analytically and numerically. 

Numerical analysis of the phase portrait is performed. 
Domains of attraction of stable periodic trajectories are 
founded. 

Estimates of the magnitude of the power of a VAWT, 
neglecting losses in the electric generator, are obtained 
numerically for several values of the pitch angle. 

The possibility of using the variable pitch angle as the 
control function is considered. 

The work is supported by RFBR (grants NN 06-01-
00079, 08-08-00390).  
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