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Abstract 

The metriplectic formalism [Morrison, 1984], couples 

Poisson brackets of the Hamiltonian description with 

metric brackets,  for describing systems with both 

Hamiltonian and dissipative components. The 

construction builds in asymptotic convergence to a 

preselected equilibrium state. Phenomena such as 

friction, electric resistivity, thermal conductivity and 

collisions in kinetic theories are well represented in 

this framework. In this paper we present an 

application of the metriplectic formalism of interest 

for the theory of control: a suitable torque is applied to 

a free rigid body, which is expressed through a 

metriplectic extension of its “natural” Poisson algebra. 

On a practical ground, the  effect is to drive the body 

to align its angular velocity to rotation about a stable 

principal axis of inertia, while conserving its kinetic 

energy in the process. On theoretical grounds, this 

example shows how the non-Hamiltonian part of a 

metriplectic system may include convergence to a 

limit cycle, the first example of a non-zero 

dimensional attractor. The method suggests a way to 

extend metriplectic dynamics to systems with general 

attractors, e.g. chaotic ones, with the hope of 

representing bio-physical, geophysical and ecological 

models. 

 

Key words 

Hamiltonian, metriplectic, Poisson bracket, 

dissipation 

 

1 Introduction 

  In this work an extension of the Hamiltonian 

formalism is considered, one that is able to include 

“dissipation” and the asymptotic convergence to 

solutions. This is realized by adding to the Poisson 

bracket a semi-metric bracket. The resulting Leibniz 

algebra governing the evolution is a metriplectic 

bracket algebra. 

In particular, a the class of complete metriplectic 

systems (CMS) is considered, in which the total 

energy of the system, namely the Hamiltonian H, is 

conserved, while another functional, referred to as the 

entropy S, grows until its maximum, which 

corresponds to an asymptotic equilibrium state,  is 

reached.. 

Complete metriplectic systems have been written for 

many cases in which a Hamiltonian physical system is 

coupled to “microscopic degrees of freedom” causing 

friction or thermal conduction [Materassi and Tassi, 

2012]; in the case of the plasma kinetic theory, 

“higher order” terms collected in collision integrals 

are recast in a semi-metric guise, so as to render the 

collisional Poisson-Vlasov system a complete 

metriplectic system [Morrison, 1984]. 

Here we focus on a particular case, already introduced 

in [Morrison, 1986], in which the Hamiltonian system 

representing a free rigid body is perturbed with an 

external torque servoτ
r

 suitably designed to modify the 

angular momentum L
r

 without changing the energy of 

the system. In particular, the action of this torque 

makes the angular velocity ω
r

 converge to a free 

rotation around one principal axis. This can be 

mathematically accomplished by adding to the 

Poisson algebra a semi-metric term based on the 

invariance of 
2L  under the action of the Poisson 

bracket of the Hamiltonian part of the system. As the 

torque applied must be a suitable function of the 

angular momentum ( )L
rrr

servoservo ττ = , the 

technological solution imagined is a servo-motor, 

indicated as metriplectic servo-motor (MSM) in what 

follows. The intriguing aspect is that, due to the 

energy conservation, the MSM would re-direct ω
r

 

without any power consumption, as 0servo =⋅ωτ
rr

. 

The paper is organized as follows. 

In § 2 a short review of the metriplectic algebra is 

presented, and some remarkable examples of CMS are 

quoted. In § 3 the application of the MSM to the free 

rigid body is presented, first using the angular velocity 

space as the phase space of the system, then 

describing its metriplectic dynamics through the 

canonical variables ( )p
r

,χ , being χ  Euler angles 

and p
r

 their canonically conjugate momenta. It is 

shown that the rotation around a principal axis of 



 

inertia corresponds to a linearly stable limit cycle in 

these variables, while it was just an asymptotic 

equilibrium point in the ω
r

 space. 

Conclusions and further development of the present 

study, both in physical and technological senses, are 

drawn in § 4.  

   

2 Metriplectic systems: a review  

   Complete metriplectic systems are dynamical 

systems governed by an extension of the usual Poisson 

brackets of the Hamiltonian systems. Typically, one 

starts with a Hamiltonian system of Hamiltonian 

( )zH  and Poisson bracket { }.,. , z being the 

dynamical variables that are coordinates of the phase 

space (for caononical systems ( )pqz ,= , the 

conjugate pair, which is not the most general 

Hamiltonian case [Morrison, 1998]). Hamiltonian 

dynamics is governed by { }.,.  and ( )zH , such that 

any observable A has dynamics given by: 

 

( ) ( ) ( ){ }., zHzAzA =&  (1) 

 

In general, this dynamics conserves H, due to the anti-

symmetric property of { }.,. , plus a certain number of 

other quantities. It may be the case that some 

quantities S exist, such that they have null Poisson 

bracket with any other function of z: 

 

( ) ( ){ } .0, AzAzS ∀=  

  

Such a quantity, referred to as Casimir of the Poisson 

bracket, is necessarily conserved by the dynamics (1) 

independent of the particular Hamiltonian. If some 

semi-metric Leibniz bracket ( ).,.  is defined 

 

( ) ( ) ( ) ,,0,,,, BAAAABBA ∀≤=  (2) 

 

such that H has it zero with any other observable 

 

( ) AHA ∀= 0,  (3) 

 

then the Leibniz bracket dynamics 

 

( ) ( ) ( ){ } ( ) ( )( )zSzAzHzAzA ,, ζ+=&  (4) 

 

will conserve the Hamiltonian because of  (3) and 

increase the Casimir S because of  (2).  If the 

metriplectic bracket 

 

{ } ( )BABABA ,,, +=  

 

is defined, then, provided the free energy functional 

SHF ζ+=  is used, the complete metriplectic 

dynamics may be constructed: 

 

( ) ( ) ( ) ;, zFzAzA =&  (5) 

 

this dynamics conserves the Hamiltonian and 

increases the Casimir 

 

( ) ( ) 0,0 ≥= zSzH &&  (6) 

 

and the second condition in (6) is realized as the 

constant ζ  in SHF ζ+=  is negative. The 

asymptotic equilibria of (5) are the extrema of F, the 

Casimir S playing the role of a Lyapunov functional. 

Moreover, thanks to ( ) 0≥zS& , such a dynamics is 

irreversible in the thermodynamic sense, while the 

Hamiltonian dynamics (1) are always reversible. 

Essentially on this basis, the perturbation of a 

Hamiltonian system with dissipative interactions, 

draining irreversibly its energy to some microscopic 

degrees of freedom, may give rise to a CMS of the 

form (5), where H represents the total energy, 

included the thermal energy of the microscopic 

degrees of freedom, while S is the entropy of the 

closed system made by the formerly Hamiltonian one 

plus the thermal bath giving rise to friction. The 

functional F is definitely interpreted as Gibb’s free 

energy, in this case. 

The aforementioned characteristics render CMS ideal 

for representing systems that are Hamiltonian in the 

limit of no dissipation and no thermal conduction, that 

relax to asymptotic equilibria due to the interaction of 

“macroscopic”, deterministic degrees of freedom, with 

“microscopic” degrees of freedom, represented via 

thermodynamics. This is the case of mechanical 

systems with friction, dissipative hydrodynamics and 

visco-resistive magneto-hydrodynamics: in all those 

examples, the dynamical variables z are a collection of 

“mechanical” variables (e.g., the position and 

momentum of a particle, bulk velocity of a 

fluid/plasma, magnetic field) plus variables 

representing the microscopic degrees of freedom 

draining irreversibly energy via dissipative processes. 

Another example of CMS is the collisional Vlasov-

Poisson equation, in which the Hamiltonian system of 

a kinetic theory of a plasma without collisions is 

metriplectically extended with the inclusion of the 

collision integral of the Landau-Lenard-Balescu form: 

in this case, there are no “macroscopic” and 



 

“microscopic” degrees of freedom, rather single or 

multiple particle processes. 

In § 3 of the present paper, a particular application of 

the CMS is presented, where the Casimir functional S 

does not depend on degrees of freedom other than 

those of the Hamiltonian system. This tricky 

interesting example is that of a free rigid body. 

 

 

3 The metriplectic servo-motor for rigid body 

  Consider a rigid body of inertia tensor σ with the 

three eigenvalues { }321 ,, III . The rigid body may be 

described via a phase space spanned by canonical 

variables, in particular the set ( )p
r

,χ  of the three 

Euler angles χ  and their kinetic momenta p
r

 (in our 

notation, only the triplet p
r

 is indicated as a vector, 

because it is a spin-1 representation of the rotation 

group SO(3), while the collection χ  of the three 

Euler angles do not transform as a vector under 

SO(3)). In the absence of external torques, the 

Hamiltonian of the system reduces to its kinetic 

energy only 

 

( ) ( ) ( ),,,
2

1
, 1T

pLpLpH
rrrrr

χσχχ ⋅⋅= −
 (7) 

 

with L
r

 being the angular momentum of the rigid 

body. The three components of L
r

 form a closed non-

canonical Poisson algebra, given by 

 

{ } k

k

ijji LLL ε−=,  (8) 

 

(summation is intended over repeated indices), i.e. the 

symplectic realization of the Lie algebra of rotations 

so(3). It is hence possible to reduce the free rigid body 

Hamiltonian dynamics [Morrison, 1998], originally 

given by (7) and { } i

jj

i
p δχ =, , to a dynamics all 

expressed in terms of the components of L
r

, with 

Hamiltonian 

 

( ) LLLH
rrr

⋅⋅= −1T

2

1
σ  (9) 

 

and Poisson algebra (8). The Hamiltonian motion of 

the free rigid body is determined as 

 

( ) ( ) ( ){ }. , LHLALA
rrr

& =  (10) 

Given (Poisson.L), any function ( )2LC  of the square 

modulus of L
r

 is a Casimir, since 

 

( ) ( ){ } .0,2 ALALC ∀=
r

 

 

The construction of a CMS out of the Hamiltonian 

system (9) and (8) is as follows: a certain symmetric 

semi-definite tensor ( )L
r

Γ  is constructed such that 

( ) 0=⋅Γ
∂
∂

L

HL r

r
; then the symmetric bracket is defined 

as 

 

( ) ,,
ji

ij

L

B

L

A
BA

∂

∂

∂

∂
Γ=  

 

so that the dynamics 

 

( ) ( ) ( ){ } ( ) ( )( )2,, LCLALHLALA
rrrr

& ζ+=  (11) 

 

represents a CMS. The simplest possible choice for 

the tensor ( )L
r

Γ  is 

 

( ) ( ) L
k

L
rrrrr

⋅=⊗−=Γ −12   /  σωωωω
ζ

1  

 

(ω
r

 being the angular velocity of the rigid body). This 

dynamics conserves H and increases C monotonically, 

until the total free energy 

 

( ) ( ) ( )2LCLHLF ζ+=
rr

 (12) 

 

reaches its extremum, 0=
∂

∂

L

F
r : this condition is 

realized for ( )LLC
rr 2'2ζω −= , being 2'

dL

dCC = , i.e. 

when the angular velocity of the rigid body and its 

angular momentum L
r

 are aligned. In other words, 

the dynamics (11) drives the rigid body to relax to the 

condition of rotation along one (stable) principal axis 

of inertia: 

 

( )eq
2

eqeqeqeq '2  /  LCILI ζω −==
rr

 (13) 

 

(clearly, as eqI  is a positive quantity, the constant ζ  

is to be taken negative, as one takes the function 

( )2LC  increasing with 
2L ). 



 

The dynamics (11) changes the vector L
r

 (without 

changing the energy ( )LH
r

), so it must be equivalent 

to the application of an external torque. In particular, 

one may see that the torque encoded in (11) is: 

 

( ) ( ) ( )[ ]. '2 22

servo ωωωτ
rrrrrr

LLLkCL ⋅−=  (14) 

 

This torque must be applied from outside, but still has 

to depend on the instantaneous motion of the rigid 

body through L
r

 and ω
r

: in order to realize 

technologically this system one has to use a servo-

mechanism, constantly reading what the rigid body is 

precisely doing. Such a mechanism will be referred to 

as metriplectic servo-motor (MSM). Remarkably, as 

one may see 

 

( ) ,0servo =⋅ωτ
rrr

L  

 

the mechanical power of the servo-motor vanishes, so 

that such a MSM could drive to alignment (13) a rigid 

body of any size with no power at all, as far as the 

mechanical labor is concerned. Of course, as servoτ
r

 

depends on the condition of the rigid body, it must 

take some energy to measure, save and react to this. 

In the phase space of the vectors L
r

 or ω
r

, the 

reduced phase space, the equilibrium to which the 

CMS (11) tends is a point-like asymptotic equilibrium, 

namely a condition of entropic death after which the 

system doesn’t evolve any more. This is identical to 

the examples of CMS quoted in § 2. Points of 

asymptotic equilibrium are 0-dimensional attractors, 

while most interesting dissipative systems (e.g. 

electric circuits, ecological systems, …) show limit 

cycles and higher dimensional (possibly strange) 

attractors. In the present example of the MSM a limit 

cycle already exists in the ( )p
r

,χ  phase space, 

simply the 1-dimensional attracting manifold 

corresponding to the equilibria (13) in the reduced 

phase space. The remaining part of this paper is 

dedicated to illustrating this point. 

The Hamiltonian ODEs governing the motion of the 

variables ( )p
r

,χ  read: 

 

( ) ( )

( ) ( )








⋅
∂

∂
⋅⋅⋅−=

⋅⋅⋅=

p
A

App

pAA

rr&r

rr
&

χ

χ
σχ

χσχχ

TT

T ,

 (15) 

 

(the triplet χ
r
&  is an SO(3)-vector, while χ  was not). 

In (15) the matrix ( )χA  gives the linear, angle 

dependent and inertia dependent relationship between 

p
r

 and ω
r

, as ( ) pA
rr

⋅= χω . It can be expressed in 

terms of the relationship ( ) χχω
r
&

r
⋅= D  between the 

angular velocity and the derivatives of Euler angles 

(see Figure 1): 

 

( )

( ) ( )( ) .

,

1cos0

0cossinsin

0sinsincos

T11

1

313

313

χσχ

χ

χχχ

χχχ

χ

−− ⋅=

















−=

DA

D
 

 

Equations (15) do correspond to the equations of 

motion of ω
r

 obtained by inserting ω
r

 in (10): so, 

they have all the same solutions as those ones, re-

expressed in the canonical variables. 

 

 
Figure 1. The Euler angles, used as Lagrangian variables for 

the rigid body. 

 

As the MSM is added to this Hamiltonian system, in 

the space of the ω
r

 vectors asymptotically stable  

points appear, that are translated into one-dimensional  

trajectories in the canonical variables ( )p
r

,χ . These 

may be shown to be limit cycles. Let us consider in 

particular the angular velocity 

 

,ˆ
2eΩ=∗ω

r
  (16) 

 

corresponding to the rigid body rotating around the 

2ê  axis: if the momentum 2I  is either the largest or 

the smallest eigenvalue of σ , this 
∗ω

r
 is an 



 

asymptotically stable point in the space of the angular 

velocities. Placing (16) into (15), and considering 

( ) pA
rr

⋅= χω , we find that the corresponding 

velocities of the Euler angles read: 

 















Ω−=

Ω=

Ω−=

⇒= ∗

.
sin

coscos

,
sin

cos

,sin

1

31
3

1

3
2

31

χ

χχ
χ

χ

χ
χ

χχ

ωω

&

&

&

rr  (17) 

 

A possible, particularly readable, solution of (17), is 

 

( )

( ) ( )
( )













∀=

+Ω=

=

. 0

,0

,
2

3

22

1

tt

tt

t

χ

χχ

π
χ

 (18) 

 

The solution (18) represents a uniform rotation around 

the node line, that will coincide with the new X axis, 

being ( ) 03 =tχ  at every time. The value of p
r

 

corresponding to ∗ω
r

 is the vector 

( ) ∗∗−∗ ⋅= ωχ
rr 1Ap , with ( ) ( )( )0,0, 22

χχ π +Ω=∗
tt , 

that reads 

 

.

0

0

2

















Ω=∗
Ip

r
  (19) 

 

This ( ) ∗∗−∗ ⋅= ωχ
rr 1Ap  and the aforementioned 

( )t∗χ  form a solution of the ODEs (15) in the space 

of canonical variables ( )p
r

,χ , as they correspond to 

the ∗ω
r

 solving the Hamilton equations in the ω
r

-

space. 

What happens to this trajectory when the MSM is at 

work? When this is so, a new term appears in the ODE 

for p
r

, i.e. some ( )pp

rr
,χ∆  representing the same 

effect of the metriplectic term ( )ωω

rr
∆  on the rigid 

body motion, now written in the canonical variables 

( )p
r

,χ . In order to find the analytical expression of 

( )pp

rr
,χ∆ , one simply imposes that the ODEs for ω

r
 

are the same in the two systems of variables. Under 

the assumption that the ODEs of the angles are not 

affected by any metriplectic contribution, i.e. 

( ) 0, =∆ p
rr

χχ , this reasoning leads to: 

 

pAACp

rr
⋅⋅⋅Γ⋅=∆ − 21'2 σζ , (20) 

 

where all the dependencies on ( )p
r

,χ  are omitted. 

The foregoing term must be added to the Hamiltonian 

contribution in (15), becoming: 

 













⋅⋅⋅Γ⋅+

+⋅
∂

∂
⋅⋅⋅−=

⋅⋅=

−

−

.'2    

,

21

TT

1

pAAC

p
A

App

pAD

r

rr&r

rr
&

σζ

χ
σ

χ

 (21)  

 

It is possible to see that the curve (18) and (19) in the 

full canonical phase space of the rigid body solves the 

total (21), because the metriplectic term 

pAACp

rr
⋅⋅⋅Γ⋅=∆ − 21'2 σζ  can be shown to vanish 

in the correspondence of ( )( )∗∗ pt
r

,χ .  This follows 

because  the matrix 

 

( )















Ω

=Γ ∗

100

000

001
2

ζ
ω

kr
 

 

has the vector 

 

( )
















Ω=⋅⋅ ∗∗

0

0
2

2

2
IpA

r
χσ  

 

in its kernel. Hence, one may state that, once on this 

orbit, the rigid body will remain there even in the 

presence of the MSM, the torque of which indeed 

vanishes along this trajectory. 

As mentioned before, provided that 2I  is either the 

maximum or the minimum of the eigenvalues of σ , 

the point (16) represents a stable equilibrium point for 

the Hamiltonian free rigid body, and an asymptotically 

stable point for its counterpart with the MSM. If the 

canonical variables ( )p
r

,χ  are adopted, the 

corresponding ( )( )∗∗ pt
r

,χ  is an attracting limit cycle 

of the metriplectic system. In order to check this, one 



 

expands in ( )p
r

δδχ ,  around ( )( )∗∗ pt
r

,χ  the 

equations (21). After this expansion, the perturbations 

( )22 , pδδχ  decouple from the other ones 

 

,0  , 2

2

2
2 == p

I

p
&& δ

δ
χδ  

 

resulting in a perturbation that will affect the cycle as: 

 

( ) ( ) ( ) ( )

2

2
222

0
  ,000

I

p
ΩΩ

δ
δχχχ ++ aa  

 

(the same cycle, but swept by starting from another 

point and with another velocity). The other variables 

evolve according to a system of linear ODEs coupled 

among themselves: 

 
( )

( )
( )

( ) ( )

( )















−+

++=

+−+

+−+=

+=

+−=

−−

−

,2

,2

2

,

,

3

22

2

2

3

133

31

22

2

2

1

3

32

2

2

121

2

21

3
1

13

1
1

31

1

21

1

2
212

3

11

21

pΩII

pp

pΩpΩII

ΩIIIΩIp

pΩ

p

I

ΩII

I

ΩIII

I

II

ΩII

δβ

δδχδ

δδβ

δχβδχδ

δδχχδ

δδχχδ

&

&

&

&

 (22) 

 

where the assumption ( )( )**2 ,' pLkC
r

χβ =  has 

been made. The study of the system (22) gives the 

expected results, viz. the perturbations of the limit 

cycle (18) and (pi.star) tend to zero with time as 

21 II −  and 
31 II −  have the same sign, i.e. as the 

body nearly rotates around a principal axis with either 

maximum or minimum moment of inertia. This 

properly represents how the point-like equilibrium 

(13) in the reduced phase space turns into an attractive 

limit cycle in the complete canonical phase space. 

 

4 Conclusions 

  In this paper we have briefly reviewed the concept of 

complete metriplectic systems, the extension of 

Hamiltonian systems possessing asymptotically stable 

equilibria. Such systems may represent energy-

conserving, entropy increasing dynamics, particularly 

useful for describing relaxation processes. 

Turning non-Hamiltonian systems into dynamics 

described by Leibniz bracket algebrae can be usefully 

applied to systems showing finite-dimensional 

attractors, as limit cycles. This is indeed the case of 

interesting systems in applied physics, space physics 

and geophysics, biophysics or mathematical ecology. 

Here an example of a complete metriplectic system 

showing limit cycle attracting orbits is reported: a free 

rigid body to which a suitable external torque is 

applied, able to modify the angular momentum, and 

angular velocity, without changing the energy. Such a 

mechanism, referred to as metriplectic servo-motor, 

may drag the angular velocity of a free rotator to align 

along one of its principal axes of inertia, without 

dissipation of mechanical energy. 

Such a final configuration, obtained via a MSM, is an 

asymptotically stable, point-like equilibrium in the 

space of angular velocity (or angular momentum), but 

corresponds to a 1-dimensional limit cycle when the 

system is described via Euler angles and their 

respective canonically conjugate momenta. 
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