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Abstract
A new stochastic mode-elimination procedure is in-

troduced for a class of deterministic systems. Under
assumptions of mixing and ergodicity, the procedure
gives closed-form stochastic models for the slow vari-
ables in the limit of infinite separation of timescales.
The procedure is applied to the truncated Burgers-Hopf
(TBH) system as a test case where the separation of
timescale is only approximate. It is shown that the
stochastic models reproduce exactly the statistical be-
havior of the slow modes in TBH when the fast modes
are artificially accelerated to enforce the separation of
timescales. It is shown that this operation of accelera-
tion only has a moderate impact on the bulk statistical
properties of the slow modes in TBH. As a result, the
stochastic models are sound for the original TBH sys-
tem.
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1 Stochastic models for deterministic systems
The stochastic mode-reduction strategy introduced in

this paper is particularly relevant in the context of high-
dimensional systems of ODEs arising as projections of
conservative partial differential differential equations.
Consider a set of real variables{uk(t)}k∈S with index
k varying in some setS. The variables{uk(t)}k∈S can
be thought of as coefficients in the some appropriate
representation (Fourier, etc.), and the setS is the set
of indexes retained in the Galerkin projection. We also
assume that the dependent variables{uk(t)}k∈S can
be decomposed in two sets,{ai}i∈Sa

and {bj}j∈Sb
,

where{ai}i∈Sa
represent the slow essential degrees

of freedom and{bj}j∈Sb
represent the fast unresolved

modes. The indicesi andj vary over some index sets
Sa = {1, ..,M} andSb = {1, .., N}. M andN are the
numbers of slow and fast variables, respectively.
We consider a general quadratic system of equations

for the variablesa = {ai} andb = {bi}

ȧi =
∑

maaa
ijk ajak +

2ε−1
∑

maab
ijk ajbk + ε−1

∑

mabb
ijkbjbk,

(1)

ḃi = ε−1
∑

mbaa
ijk ajak +

2ε−1
∑

mbab
ijkajbk + ε−2

∑

mbbb
ijkbjbk,

whereε < 1 is a parameter measuring the difference
in timescales between the slow and fast modes, and we
will be interested in the asymptotic behavior of (1) in
the limit asε → 0. Summations in (1) are taken over
the repeated indexes which vary in the setSa or Sb, de-
pending on the indexed variable. The right-hand sides
in (1) have been explicitly decomposed into the self-
interactions of slow modes (a with a), interactions be-
tween the slow and fast dynamics (a andb), and fast
self-interactions (b with b). The interaction coefficients
are denoted asmxzy

ijk where eachx, y, z stands fora or
b. Without the loss of generality we can make the sym-
metry assumptionmxyz

ijk = mxzy
ikj .

We also assume that (i)mxyz
ijk +myzx

jki +mzxy
kij = 0; this

assumption guarantees that the dynamics in (1) con-
serves energy

E =
∑

a2
i +

∑

b2
i =: |a|2 + |b|2, (2)

and (ii) divergence of the right-hand side of the system
in (1) is zero; the second assumption ensures that the
dynamics in (1) is volume-preserving (Liouville prop-
erty). If we also assume that (1) is ergodic on the hy-
persphere defined in (2) then it follows that the unique
invariant measure for (1) is the uniform distribution on
the sphereE = Const. Finally, we will assume that
the dynamics in (1) is exponentially mixing.



1.1 Stochastic models for smallε
It has been demonstrated in (Majdaet al., 2006) that

under the conditions described in the previous section,
the limiting behavior ofa(t) in (1) asε → 0 can be
captured by a stochastic model

dai =
∑

maaa
ijk ajakdt + Bi(a)dt

(3)

+
∑ ∂

∂aj

Dij(a)dt +
√

2
∑

σij(a)dWj ,

where Wj is a M -dimensional Wiener process and
σij(a) satisfies

∑

σik(a)σjk(a) = Dij(a).
The proposition can be formally established by sin-

gular perturbation analysis of the backward equation
associated with (1), see e.g. (Majdaet al., 2001). A
rigorous proof can be found e.g. in (Freidlin and
Wentzell, 1998).
The drift and diffusion in (3) are given by

Bi(a) = −(1 − 2N−1)E−1
∑

Dij(a)aj , (4)

whereE := E(a) := N−1(E − |a|2) and

Dij(a) =
√
E

∫ ∞

0

∫

Pi(c)Pj (C(t)) dµdt, (5)

with

Pi(c) = 2
∑

maab
ijk ajck +

√
E

∑

mabb
ijkcjck. (6)

HereC(t) is the solution of the fast auxiliary subsys-
tem

ċi =
∑

mbbb
ijkcjck, (7)

with initial conditionC(0) = c consistent with the en-
ergy requirement|c|2 = N , anddµ is the uniform mea-
sure on the sphere of constant energy|c|2 = N , where
N is the number of fast variables.
The proof of this Proposition uses a rescaling on the

sphere of radiusN of the fast subsystem. After this
rescaling the system (7) must be solved with an initial
condition consistent with|C(0)|2 = |c|2 = N , which
is therefore independent ofa. In other words, the dif-
fusion tensorDij(a) can be estimated for alla from a
single calculation with (7).
The integrals with respect to the invariant measuredµ

correspond to microcanonical averages of the fast sub-
system on the energy shell|C|2 = N . Therefore, aver-
ages in (5) can be expressed as the area under the graph
of the two-point autocorrelation function. These terms
are evaluated numerically from a single realization of
the fast subsystem.

2 Truncated Burgers-Hopf system
We apply a recently developed stochastic mode-

reduction strategy for deterministic conservative sys-
tems (see (Majdaet al., 2006) for complete details)
to the spectral truncation of the inviscid Burgers-Hopf
model. These equations can be recast as a finite-
dimensional system of equations for the Fourier am-
plitudes,ûk with 0 < |k| ≤ Λ

˙̂uk = − ik

2

∑

k+p+q=0

|p|,|q|≤Λ

û∗
pû

∗
q , (8)

with the reality condition̂u−k = û∗
k. The spectral trun-

cation of the inviscid Burgers-Hopf model (TBH) was
introduced in (Majda and Timofeyev, 2000; Majda and
Timofeyev, 2002); this system exhibits many of the de-
sirable properties found in more complex systems, but
has the virtue of allowing a relatively complete analysis
of statistical properties and extensive numerical stud-
ies. The key property is the conservation of energy

E =
1

4π

∫ 2π

0

u2
Λdx =

Λ
∑

k=1

|ûk|2. (9)

The vector field in (8) is volume-preserving and in
(Majda and Timofeyev, 2000; Majda and Timofeyev,
2002) an equilibrium statistical theory for the TBH was
developed. The marginal on each Fourier modek 6= 0
of the microcanonical distribution approaches Gaus-
sian probability distributionµ(dûk) = Cβe−β|ûk|

2

dûk

in the limit Λ → ∞ with E = Λ/β for someβ
playing the role of an inverse temperature. This im-
plies equipartition of energy in this limit∀k 6= 0 :
var{Reûk} = var{Im ûk} = 1

2β . These predictions
were verified for a wide variety of regimes and ran-
dom and deterministic initial data. In addition, it was
demonstrated that for low wavenumbers an empirical
scaling law for correlation times, defined as the area un-
der the normalized auto-correlation functions for mode
ûk, holds: corrtime{ûk} ∼ |k|−1.

3 Selectively accelerated TBH systems
The results in Section 1 hold provided that the

timescale separation between fast and slow variables is
infinite. In practical applications the timescale separa-
tion between these two groups of variables is moderate,
at best. Therefore, for any such system it is in princi-
ple necessary to verify the applicability of asymptotic
expansions a priori. A systematic way to address this
issue is to artificially accelerate the dynamics of the fast
variables and observe the effect this induces on the sta-
tistical behavior of the slow variables. This procedure
can be implemented as follows on TBH: (i) fix a wave
numberΛ1 < Λ such that any mode with|k| ≤ Λ1 is
considered as slow, and any mode withΛ1 < |k| ≤ Λ



is considered as fast; (ii) modify (8) by introducingε
into the equation consistent with the general form of
(1). The original TBH system is recovered by setting
ε = 1.

Since the timescale separation is only approximate
in the original TBH, the grouping into fast and slow
modes is somewhat arbitrary. Here we illustrate the ap-
proach outlined in the previous section forΛ1 = 1, i.e.
u1 is the only slow mode.

3.1 One slow mode,̂u1

Taking the first Fourier coefficient as the only slow
mode amounts to choosingΛ1 = 1, in which case
the Selectively-Accelerated TBH (SA-TBH) system is
given by

˙̂u1 = − i

2ε

∑

p+q+1=0

2≤|p|,|q|≤Λ

û∗
pû

∗
q ,

˙̂uk = − ik

2ε
(ûk+1û

∗
1 + ûk−1û1) (10)

− ik

2ε2

∑

k+p+q=0

2≤|p|,|q|≤Λ

û∗
pû

∗
q , (k ≥ 2)

where we used the reality condition̂u−k = û∗
k to sim-

plify the right-hand side of the second equation.

The SA-TBH systems in (10) preserve the energy
in (9) for all ε. If the dynamics is ergodic and mix-
ing on the surface of constant energy, then equilibrium
statistical mechanics predicts that the equilibrium dis-
tribution is the microcanonical distribution on the sur-
face of constant energy. Then (10) (written in terms of
Reûk and Imûk) is a special case of (1), and its be-
havior asε → 0 is given by the stochastic system in
(3).

Notice that the slowest of the fast modes,û2, is
only twice as fast as the designated slow mode, i.e.
corr time{û1}/corr time{û2} ≈ 2 whenε = 1. Of
course, the situation changes whenε → 0, and the main
goal for considering the SA-TBH system in (10) is in-
vestigate the effect of this operation on the statistical
behavior ofû1.

We perform direct numerical simulations of the equa-
tions in (10) with three values ofε = 0.5, 0.25, 0.1,
and compare them with the original system withε = 1.
The other parameters were chosen to beΛ = 20, E =
0.4 (β = 50).
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Figure 1: Normalized correlation function of Reu1

from the simulations of the SA-TBH system in (10).

All statistics are computed as time-averages from a sin-
gle microcanonical realization of lengthT ≈ 105.
The behavior of correlation functions for various val-

ues ofε is presented in Figure 1. There is a signif-
icant difference between the simulations withε = 1
andε = 0.5; a small difference betweenε = 0.5 and
ε = 0.25; and almost no difference betweenε = 0.25
and ε = 0.1. This demonstrates convergence of the
correlation functions in the limit asε → 0. However,
the shape of the correlation functions in this limit also
shows that the artificial acceleration in TBH does have
an effect on the dynamics. The correlation functions
at ε = 0.5 . . . 0.1 are close to exponential, while the
correlation function in the original TBH systems has a
complicated shape with the “bump” in the middle and
smoother behavior at zero. Nevertheless, the mean de-
cay rate is reproduced correctly by the simulations of
the accelerated model. The correlation times (area un-
der the graph of the corresponding normalized correla-
tion function) of Reû1 in the simulation withε = 1
andε = 0.1 are

corr time{û1}ε=1 ≈ 2.63,
corr time{û1}ε=0.1 ≈ 2.4.

4 Stochastic model forû1

In this section we use the effective SDE in (3) to study
the statistical behavior of̂u1. In principle, the solution
of this SDE should behave similarly as the solutions of
(10) at smallε. In practice, however, additional dis-
crepancies can be introduced because the coefficients
in the SDE are obtained numerically with finite preci-
sion only.
In order to write the SDEs in a more compact form we

denote the slow variables as

a = (a1, a2) ≡ (Reû1, Im û1). (11)

Then the SDE in (3) obtained from (10) in the limit as
ε → 0 can be written explicitly as:

dak = [B(a) + H(a)]akdt +
√

2σ(a)dWk(t), (12)



for k = 1, 2, where

B(a) = −(1 − N−1)
(

E1/2I2|a|2 + E3/2If

)

/E ,

H(a) = 2E1/2I2 − (E−1/2|a|2I2 + 3E1/2If )/N,

σ2(a) = E1/2|a|2I2 + E3/2If ,

whereB(a) andH(a) are the drift and It̂o terms in (3),
respectively.E(a) denotes the energy per mode of the
fast subsystem, i.e.

E(a) = N−1(E − |a|2), (13)

whereN = 2Λ−2 is the number of fast degrees of free-
dom andE is the total energy of the full TBH model.
The integral ofPi(c)Pj (C(t)) in (5) can be recast as

the cross-correlation between right-hand sides of the
slow variables projected onto the fast dynamics alone.
Therefore, we have also defined

I2 = I [Reû2, Reû2] = I [Im û2, Im û2] , If = I [fr, fr] = I
[

f i, f i
]

.
(14)

whereI[·, ·] is a short-hand notation for the area under
the graph of a correlation function

I [g, h] =

∫ ∞

0

〈g(t)h(t + τ)〉tdτ, (15)

where〈·〉t denotes the temporal average, and

fr(t) = Re
(

− i

2

∑

p+q+1=0

2≤|p|,|q|≤Λ

û∗
pû

∗
q

)

,

(16)

f i(t) = Im
(

− i

2

∑

p+q+1=0

2≤|p|,|q|≤Λ

û∗
pû

∗
q

)

denote the real and the imaginary parts of the right
hand-side of the equation for̂u1 in (10). The vari-
ous correlation functions in the expressions above must
be computed on the fast subsystem (7), which in the
present situation corresponds to a TBH system with
wavenumbers2 ≤ |k| ≤ Λ

˙̂uk = − ik

2

∑

k+p+q=0

2≤|p|,|q|≤Λ

û∗
pû

∗
q , (2 ≤ |k| ≤ Λ).

(17)
The derivation of (12) is somewhat tedious but

straightforward. In addition to the general assumptions
stated in Section 1 the derivation utilizes specific prop-
erties of the TBH system to simplify the expressions for
the stochastic model further. First, it uses the fact that

the correlations of the real and imaginary parts of the
same mode are identical by symmetry. Second, it uti-
lizes the property (verified to very good precision for
large Λ in (Majda and Timofeyev, 2000; Majda and
Timofeyev, 2002)) that the joint distributions of any
two modes is Gaussian with a diagonal correlation ma-
trix. Therefore, all third moments can be neglected. Fi-
nally, it uses the fact that the cross-correlation between
fr andf i, and Rêu2 and Imû2 are negligible

〈fr(0)f i(t)〉t = 〈Reû2(0) Im û2(t)〉t ≈ 0,

which is also verified to very good precision in the sim-
ulations.
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Figure 2: Marginal probability density function of
Reû1 in the simulations of the original TBH system
(8) with Λ = 20 (solid line) and the corresponding

SDE in (12) (dashed line).
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Figure 3: Normalized correlation function of Reû1 in
the simulation of the original TBH system in (8) with
Λ = 20 (solid line), the SA-TBH system in (10) with

ε = 0.1 (dash-dotted line) and the SDE in (12)
(dashed line).

We consider two casesΛ = 20 andΛ = 40. The val-
ues of coefficients are(I2, If )Λ=20 = (0.14, 4.3), and
(I2, If )Λ=40 = (0.092, 6.1) were computed from the
simulations of the auxiliary fast subsystem forΛ = 20
andΛ = 40 on energy levels consistent withβ = 1/2
for several sets of initial conditions. Fluctuations of
these parameters do not exceed 1.5%.



Statistical behavior of the stochastic model The
comparison between the direct numerical simulations
of the original TBH system in (8) and the SDEs in (12)
is depicted in Figures 2 and 3. The one-time statistics
is Gaussian in both simulations with perfect agreement
between the simulations of the full TBH system and the
stochastic model. To illustrate this, marginal distribu-
tion of Reû1 is presented in Figure 2.
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Figure 4: Normalized correlation function of Reû1 in
the simulation of the original TBH system in (8) with
Λ = 40 (solid line), the SA-TBH system in (10) with

ε = 0.1 (dash-dotted line) and the SDE in (12)
(dashed line).

Unlike the one-time statistics, the correlation func-
tions of Reû1 and Imû1 differ more considerably
between the original TBH system and the stochastic
model. The detailed structure of the correlations is
no longer represented in the stochastic model. In-
stead, correlation functions of Rêu1 and Imû1 are
exponentials with the averaged rate of decay reflect-
ing the decorrelation times of the full model. But,
as expected, the correlation functions of the stochas-
tic model agree with the simulations of the SA-TBH
system in (10) within a few percent. The correlation
functions of Rêu1 for truncation sizesΛ = 20 and
Λ = 40 in the simulation of the original TBH system,
the SA-TBH system withε = 0.1, and correspond-
ing stochastic models is depicted in Figures 3 and 4,
respectively. Decorrelation times of the modeû1 are
presented in Table 1.

Λ = 20 Λ = 40
Original TBH 2.63 1.81
SDE in (12) 2.17 1.61

SA-TBH (ε = 0.1) 2.38 1.84

Table 1: Estimates for decorrelation times
(1/area of the normalized correlation function) of
Reû1 in simulations withΛ = 20 andΛ = 40.

5 Conclusions
A modified stochastic mode-reduction strategy for

conservative systems was presented. One of the main
advantages of the current approach is that no ad-hoc
modifications of the underlying equations are neces-
sary. Under assumptions of mixing and ergodicity,

the procedure gives closed-form stochastic differential
equations for the slow dynamics which are exact in the
limit of infinite timescale separation between fast and
slow modes. Only bulk statistical quantities of the fast
dynamics enter the stochastic equations as coefficients
and these can be computed for all energy levels from a
single microcanonical realization on an auxiliary sub-
system.
In any realistic system, the separation of timescale is

only approximate. In this case, the stochastic model
captures the behavior of the slow modes in a system
where the fast modes have been artificially accelerated.
This viewpoint allows, at least in principle, to test the
validity and relevance of the stochastic model by as-
sessing the impact of the artificial acceleration on the
original dynamics. This approach was tested here on
the TBH system. It was shown that the statistical prop-
erties of the slow modes in the SA-TBH system are,
in the bulk if not in the detail, similar to the proper-
ties of these modes in the original TBH system. As
a result, the stochastic models with only one or two
modes retained out of 102 perform surprisingly well.
The transportability of these conclusions to other sys-
tems is difficult to test, but they offer hope that the
stochastic mode-elimination approach is applicable to
problems without substantial timescale separation, as
is the case in most applications of interest.
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