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Abstract
In this paper, using the global bifurcation theory, we

complete the qualitative analysis of a quartic dynamical
system which models the dynamics of the populations
of predators and their prey that use the group defense
strategy in a given ecological system. In particular, we
prove that such a system can have at most two limit
cycles.
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1 Introduction
In [Gaiko, 2003] we have developed the global bi-

furcation theory of polynomial dynamical systems by
means of which some new results in the qualitative the-
ory of differential equations have been obtained. For
instance, in [Gaiko, 2003; Gaiko, 2008, NA] some
complete results on quadratic systems have been pre-
sented. In particular, it has been proved that for
quadratic systems four is really the maximum num-
ber of limit cycles and(3 : 1), i. e., three limit cycles
around one focus and the only limit cycle around an-
other focus, is their only possible distribution (this is a
solution of Hilbert’s Sixteenth Problem in the quadratic
case of polynomial dynamical systems). In [Gaiko and

van Horssen, 2004] some preliminary results on gener-
alizing new ideas and methods of [Gaiko, 2003] to cu-
bic dynamical systems have been established. In par-
ticular, a canonical cubic system of Kukles type has
been constructed and the global qualitative analysis of
its special case corresponding to a generalized Liénard
equation has been carried out. It has been proved also
that the foci of such a Liénard system can be at most
of second order and that such system can have at most
three limit cycles on the whole phase plane. Moreover,
unlike all previous works on the Kukles-type systems,
global bifurcations of limit and separatrix cycles using
arbitrary (including as large as possible) field rotation
parameters of the canonical system have been studied
in [Gaiko and van Horssen, 2004]. As a result, the
classification of all possible types of separatrix cycles
for the generalized Liénard system has been obtained
and all possible distributions of its limit cycles have
been found. In [Gaiko, 2008, CUBO] a solution of
Smale’s Thirteenth Problem proving that the Liénard
system with a polynomial of degree2k + 1 can have
at mostk limit cycles has been presented. Besides,
in [Gaiko, 2008, CUBO] the global qualitative analy-
sis of a Líenard-type piecewise linear dynamical sys-
tem which is well-known in radio-electronics has been
completed. In [Botelho and Gaiko, 2006] we have es-
tablished the global qualitative analysis of a cubic cen-
trally symmetric dynamical system which can be used
as a learning model of planar neural networks. All



of these methods and results can be applied to quar-
tic dynamical systems as well. In this paper, using
[Botelho and Gaiko, 2006; Gaiko, 2003 – Gaiko and
van Horssen, 2004], we will complete the global quali-
tative analysis of a quartic ecological model [Bazykin,
1998; Broer, Naudot, Roussarie, Saleh and Wagener,
2007; Holling, 1959 – Li and Xiao, 2007; Zhu, Camp-
bell and Wolkowicz, 2002]. In particular, studying
global bifurcations of limit cycles, we will prove that
the corresponding dynamical system can have at most
two limit cycles.
We will investigate the following quartic dynamical

system which models the dynamics of the populations
of predators and their prey that use the group defense
strategy in a given ecological system and which is a
variation on the classical Lotka–Volterra system:

ẋ = x((1− λx)(αx2 + βx + 1)− y) ≡ P,

ẏ = −y((δ + µy)(αx2 + βx + 1)− x) ≡ Q,
(1.1)

whereα ≥ 0, δ > 0, λ > 0, µ ≥ 0 andβ > −2
√

α are
parameters. This quartic ecological model was stud-
ied earlier, for instance, in [Broer, Naudot, Roussarie,
Saleh and Wagener, 2007; Li and Xiao, 2007; Zhu,
Campbell and Wolkowicz, 2002]. However, the quali-
tative analysis was incomplete, since the global bifur-
cations of limit cycles could not be studied properly by
means of the methods and techniques which were used
earlier in the qualitative theory of dynamical systems.
Together with (1.1), we will also consider an auxiliary

system [Bautin and Leontovich, 1990; Perko, 2002]

ẋ = P − γQ, ẏ = Q + γP, (1.2)

applying to these systems new bifurcation methods
and geometric approaches developed in [Botelho and
Gaiko, 2006; Gaiko, 2003 – Gaiko and van Horssen,
2004] and completing the qualitative analysis of (1.1).

2 Bifurcations of Limit Cycles
Let us first formulate the Wintner–Perko termination

principle [Perko, 2002] for the polynomial system

ẋ = f(x,µ), (2.1µ)

wherex ∈ R2; µ ∈ Rn; f ∈ R2 (f is a polynomial
vector function).

Theorem 2.1 (Wintner–Perko termination princi-
ple). Any one-parameter family of multiplicity-m limit
cycles of relatively prime polynomial system(2.1µ)
can be extended in a unique way to a maximal one-
parameter family of multiplicity-m limit cycles of
(2.1µ) which is either open or cyclic.
If it is open, then it terminates either as the para-

meter or the limit cycles become unbounded; or, the

family terminates either at a singular point of(2.1µ),
which is typically a fine focus of multiplicitym, or on a
(compound) separatrix cycle of(2.1µ), which is also
typically of multiplicitym.

The proof of this principle for general polynomial sys-
tem (2.1µ) with a vector parameterµ ∈ Rn parallels
the proof of the planar termination principle for the sys-
tem

ẋ = P (x, y, λ), ẏ = Q(x, y, λ) (2.1λ)

with a single parameterλ ∈ R [Gaiko, 2003; Perko,
2002], since there is no loss of generality in assuming
that system(2.1µ) is parameterized by a single para-
meterλ; i. e., we can assume that there exists an an-
alytic mappingµ(λ) of R into Rn such that(2.1µ)
can be written as(2.1 µ(λ)) or even(2.1λ) and then we
can repeat everything, what had been done for system
(2.1λ) in [Perko, 2002]. In particular, ifλ is a field ro-
tation parameter of(2.1λ), the following Perko’s the-
orem on monotonic families of limit cycles is valid
[Perko, 2002].

Theorem 2.2.If L0 is a nonsingular multiple limit cy-
cle of(2.10), thenL0 belongs to a one-parameter fam-
ily of limit cycles of(2.1λ); furthermore:
1) if the multiplicity ofL0 is odd, then the family ei-

ther expands or contracts monotonically asλ increases
throughλ0;
2) if the multiplicity ofL0 is even, thenL0 bifurcates

into a stable and an unstable limit cycle asλ varies
from λ0 in one sense andL0 disappears asλ varies
fromλ0 in the opposite sense; i. e., there is a fold bifur-
cation atλ0.

Applying the definition of a field rotation parameter
[Bautin and Leontovich, 1990; Gaiko, 2003; Perko,
2002], i. e., a parameter which rotates the field in one
direction, to system (1.1), let us calculate the corre-
sponding determinants for the parametersα andβ, re-
spectively,

∆α = PQ′
α −QP ′

α

= x3y(y(δ + µy)− x(1− λx)),
(2.2)

∆β = PQ′
β −QP ′

β

= x2y(y(δ + µy)− x(1− λx)).
(2.3)

It follows from (2.2) and (2.3) that on increasingα or
β the vector field of (1.1) in the first quadrant is ro-
tated in positive direction (counterclockwise) only on
the outside of the ellipse

y(δ + µy)− x(1− λx) = 0. (2.4)

Therefore, to study limit cycle bifurcations of system
(1.1), it makes sense together with (1.1) to consider also



an auxiliary system (1.2) with a field rotation parame-
terγ :

∆γ = P 2 + Q2 ≥ 0. (2.5)

Using system (1.2) and applying Perko’s results, we
will prove the following theorem.

Theorem 2.3.System(1.1) can have at most two limit
cycles.

Proof. First let us prove that system (1.1) can have at
least two limit cycles.
Let the parametersα, β vanish and consider first the

quadratic system

ẋ = x(1− λx− y),

ẏ = −y(δ + µy − x).
(2.6)

It is clear that such a system, with two invariant straight
lines, cannot have limit cycles at all [Gaiko, 2003].
Inputting a negative parameterβ into this system, the

vector field of the cubic system

ẋ = x((1− λx)(βx + 1)− y),

ẏ = −y((δ + µy)(βx + 1)− x)
(2.7)

will be rotated in negative direction (clockwise) at in-
finity, the structure and the character of stability of infi-
nite singularities will be changed, and an unstable limit,
Γ1, will appear immediately from infinity in this case.
This cycle will surround a stable antisaddle (a node
or a focus),A1, which is in the first quadrant of sys-
tem (2.7).
Inputting a positive parameterα into system (2.7),

the vector field of quartic system (1.1) will be rotated
in positive direction (counterclockwise) at infinity, the
structure and the character of stability of infinite singu-
larities will be changed again, and a stable limit,Γ2,
surroundingΓ1 will appear immediately from infinity
in this case. On further increasing the parameterα,
the limit cyclesΓ1 andΓ2 combine a semi-stable limit,
Γ12, which then disappears in a “trajectory concentra-
tion” [Bautin and Leontovich, 1990; Gaiko, 2003].
On further increasingα, two other singular points, a

saddleS and an antisaddleA2, will appear in the first
quadrant in system (1.1). We can fix the parameterα,
fixing simultaneously the positions of the finite singu-
larities A1, S, A2, and consider system (1.2) with a
positive parameterγ which acts like a positive parame-
terα of system (1.1), but on the whole phase plane.
So, consider system (1.2) with a positive parameterγ.

On increasing this parameter, the stable nodesA1 and
A2 becomes first stable foci, then they change the char-
acter of their stability, becoming unstable foci. At
these Andronov–Hopf bifurcations [Bautin and Leon-
tovich, 1990; Gaiko, 2003], stable limit cycles will

appear from the fociA1 andA2. On further increas-
ing γ, the limit cycles will expand and will disappear
in small separatrix loops of the saddleS. If these loops
are formed simultaneously, we will have a so-called
eight-loop separatrix cycle. In this case, a big stable
limit surrounding three singular points,A1, S, andA2,
will appear from the eight-loop separatrix cycle after
its destruction, expanding to infinity on increasingγ.
If a small loop is formed earlier, for example, around
the pointA1 (A2), then, on increasingγ, a big loop
formed by two lower (upper) adjoining separatrices of
the saddleS and surrounding the pointsA1 and A2

will appear. After its destruction, we will have simul-
taneously a big limit cycle surrounding three singular
points,A1, S, A2, and a small limit cycle surrounding
the pointA2 (A1). Thus, we have proved that system
(1.1) can have at least two limit cycles, see also [Broer,
Naudot, Roussarie, Saleh and Wagener, 2007; Li and
Xiao, 2007; Zhu, Campbell and Wolkowicz, 2002].

Let us prove now that this system can have at most
two limit cycles. The proof is carried out by contradic-
tion applying Catastrophe Theory, see [Gaiko, 2003;
Perko, 2002]. Consider system (1.2) with three para-
meters:α, β, andγ (the parametersδ, λ, andµ can
be fixed, since they do not generate limit cycles). Sup-
pose that (1.2) has three limit cycles surrounding the
only point,A1, in the first quadrant. Then we get into
some domain of the parametersα, β, andγ being re-
stricted by definite conditions on three other parame-
ters,δ, λ, andµ. This domain is bounded by two fold
bifurcation surfaces forming a cusp bifurcation surface
of multiplicity-three limit cycles in the space of the pa-
rametersα, β, andγ [Gaiko, 2003; Perko, 2002].

The corresponding maximal one-parameter family of
multiplicity-three limit cycles cannot be cyclic, oth-
erwise there will be at least one point correspon-
ding to the limit cycle of multiplicity four (or even
higher) in the parameter space. Extending the bifur-
cation curve of multiplicity-four limit cycles through
this point and parameterizing the corresponding maxi-
mal one-parameter family of multiplicity-four limit cy-
cles by the field rotation parameter,γ, according to
Theorem 2.2, we will obtain two monotonic curves of
multiplicity-three and one, respectively, which, by the
Wintner–Perko termination principle (Theorem 2.1),
terminate either at the pointA1 or on a separatrix cy-
cle surrounding this point. Since we know at least the
cyclicity of the singular point which is equal to two
[Broer, Naudot, Roussarie, Saleh and Wagener, 2007;
Li and Xiao, 2007; Zhu, Campbell and Wolkowicz,
2002], we have got a contradiction with the termina-
tion principle stating that the multiplicity of limit cycles
cannot be higher than the multiplicity (cyclicity) of the
singular point in which they terminate. If the maximal
one-parameter family of multiplicity-three limit cycles
is not cyclic, using the same principle (Theorem 2.1),
this again contradicts the cyclicity ofA1 [Broer, Nau-
dot, Roussarie, Saleh and Wagener, 2007; Li and Xiao,
2007; Zhu, Campbell and Wolkowicz, 2002] not admit-



ting the multiplicity of limit cycles to be higher than
two. This contradiction completes the proof in the case
of one singular point in the first quadrant.
Suppose that system (1.2) with three finite singulari-

ties,A1, S, andA2, has two small limit cycles around,
for example, the pointA1 (the case when limit cycles
surround the pointA2 is considered in a similar way).
Then we get into some domain in the space of the pa-
rametersα, β, andγ which is bounded by a fold bifur-
cation surface of multiplicity-two limit cycles [Gaiko,
2003; Perko, 2002].
The corresponding maximal one-parameter family of

multiplicity-two limit cycles cannot be cyclic, other-
wise there will be at least one point corresponding to
the limit cycle of multiplicity three (or even higher)
in the parameter space. Extending the bifurcation
curve of multiplicity-three limit cycles through this
point and parameterizing the corresponding maximal
one-parameter family of multiplicity-three limit cycles
by the field rotation parameter,γ, according to The-
orem 2.2, we will obtain a monotonic curve which,
by the Wintner–Perko termination principle (Theo-
rem 2.1), terminates either at the pointA1 or on some
separatrix cycle surrounding this point. Since we know
at least the cyclicity of the singular point which is equal
to one in this case [Broer, Naudot, Roussarie, Saleh and
Wagener, 2007; Li and Xiao, 2007; Zhu, Campbell and
Wolkowicz, 2002], we have got a contradiction with the
termination principle (Theorem 2.1). If the maximal
one-parameter family of multiplicity-two limit cycles
is not cyclic, using the same principle (Theorem 2.1),
this again contradicts the cyclicity ofA1 [Broer, Nau-
dot, Roussarie, Saleh and Wagener, 2007; Li and Xiao,
2007; Zhu, Campbell and Wolkowicz, 2002] not ad-
mitting the multiplicity of limit cycles higher than one.
Moreover, it also follows from the termination princi-
ple that either an ordinary (small) separatrix loop or a
big loop, or an eight-loop cannot have the multiplicity
(cyclicity) higher than one in this case. Therefore, ac-
cording to the same principle, there are no more than
one limit cycle in the exterior domain surrounding all
three finite singularities,A1, S, andA2.
Thus, taking into account all other possibilities for

limit cycle bifurcations [Broer, Naudot, Roussarie,
Saleh and Wagener, 2007; Li and Xiao, 2007; Zhu,
Campbell and Wolkowicz, 2002], we conclude that sys-
tem (1.1) cannot have either a multiplicity-three limit
cycle or more than two limit cycles in any configura-
tion. The theorem is proved.
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