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Abstract
Elucidating quantum systems theory in terms of sym-

metry principles has triggered us in a number of recent
advances:
(1) it leads to a new handy controllability criterion,
(2) it guides the design of quantum hardware,
(3) it governs which quantum system can simulate an-

other one given, and
(4) it specifies the limit between time-optimal control

and relaxation-optimised control of open systems.
How principles turn into practice has been illustrated
in the talk by a plethora of examples showing practi-
cal applications in solid-state devices, circuit-QED, and
in spin systems. The algorithmic tools have been pre-
sented in a unified programming framework.

Key words
quantum systems theory, symmetry, optimal control,

controllability, bilinear control systems, dynamic sys-
tem Lie algebras.

1 Introduction
The purpose of my presentation summed up in this

paper is to invite the well-established community of
control engineers and classical physicists to exchange
with the vibrant developments in the field of quantum
systems and control [Dowling and Milburn, 2003] in
view of future technologies. These may be triggered
by precise controls for, e.g., quantum simulation in or-
der to improve the understanding of quantum phase
transitions [Sachdev, 1999] between normal conduct-
ing and superconducting phases, or ferromagentic vs.
anti-ferromagnetic phases to name just a few. Needless
to say an operative thorough picture of these phenom-
ena will booster advanced material design.
More precisely, an important issue in quantum simula-

tion [Feynman, 1982; Abrams and Lloyd, 1997; Ben-
nett et al., 2002; Dodd et al., 2002; Jané et al., 2003;

Bremner et al., 2005] is to manipulate all pertinent dy-
namical degrees of freedom of a system A of inter-
est (which, however, all-to-often is experimentally not
fully accessible) by another quantum system B that is
in fact well controllable in practice and the dynamics
of which are equivalent to those of A. We will show
how to characterise this situation algebraically in terms
of quantum systems theory.
Besides the practical applications and implications,

quntum systems should be of particular appeal to the
(classical) control engineer, because nearly all sytems
of interest boil down to the familiar standard form of
bilinear control systems [Levine, 1996; Sontag, 1998;
Elliott, 2009]

Ẋ(t) = (A+
∑
j

ujBj)X(t) with X0 = X(0) .

(1)
Here one may take A,B as linear operators on the
(finite-diemnsional) Hilbert space of quantum states
{|ψ(t)〉} ⊆ H. More precisely, A denotes the sys-
tem or drift Hamiltonian iH0, while the Bj are the
control Hamiltonians iHj governed by typically piece-
wise constant control amplitudes uj ∈ R (which need
not be bounded). Thus Eqn. (1) captures all of the fol-
lowing important scenarios

1. controlled Schrödinger eqn.
|ψ̇(t)〉 = −i(Hd +

∑
j ujHj)|ψ(t)〉

2. quantum map of closed system
U̇(t) = −i(Hd +

∑
j ujHj)U(t)

3. quantum map of open quantum system
ρ̇(t) = −(i adHd

+i
∑
j uj adHj +ΓL) vec(ρ(t)) ,

4. quantum map of open quantum system
Ḟ (t) = −(i adHd

+i
∑
j uj adHj

+ΓL)F (t) ,

where U denotes a unitary operator on H often used
as a quantum gate, while F is the linear quantum



map for open systems governed by the relaxation (su-
per)operator Γ onH⊗H and ρ is the density operator.
While the familiar linear control systems

ẋ(t) = Ax+Bu with x0 = x(0) (2)

are fully controllable [Kalman et al., 1969] if
rank [B,AB,A2B, . . . , AN−1B] = N in the sense it
has full rank N , bilinear systems of Eqn. (1) are fully
controllable over the (compact) connected Lie group G
(generated by its Lie algebra g via G = 〈exp g〉) when-
ever they satisfy the so-called Lie-algebra rank con-
dition [Sussmann and Jurdjevic, 1972; Jurdjevic and
Sussmann, 1972; Brockett, 1972; Brockett, 1973]

〈A,Bj | j = 1, 2, . . . ,m〉Lie = g .su(N) . (3)

For quantum systems of n spins- 12 , one has g =
su(N) with N := 2n, which already shows the state
space and thereby that the dyamic degrees of freedom
in quantum systems scale exponentially in system size
(as opposed to classical systems, where they scale lin-
early). Thus it is obvious that assessing controllabil-
ity via an explicit Lie closure, though mathematically
elegant, becomes dramatically more tedious in quan-
tum systems, and beyond seven qubits it is mostly pro-
hibitive.

2 Theory
Hence here we will sketch a particularly simple and

powerful alternative to assessing the controllability of
quantum systems by way of easy-to-visualise symmetry
arguments.

2.1 Symmetry Conditions for Controllability
To begin with, it pays to envisage the bilinear con-

trol systems by graphs in the way illustrated in Fig. 1:
while the vertices represent local qubits as controlled
by typical control Hamiltonians Bj = iHj (repre-
sented by Pauli matrices σx, σy, σz acting on the qubit
represented by the respective vertex), the edges stand
for pair-wise coupling interactions as typically only
occuring in the drift term A = iH0 (represented by
two-component tensor products of Pauli matrices as,
e.g., Jzz · σz ⊗ σz for the standard Ising interaction or
JXX ·(σx⊗σx+σy⊗σy) for the so-called Heisenberg-
XX interaction. Here the Pauli operators act on the
two qubits connected by the respective edge). Scenar-
ios of this kind are illustrated in Fig. 1.

As a central notion in the subsequent arguments, we
characterise a quantum bilinear control system by its
system Lie algebra, which results from the Lie closure
of taking nested commutators (until no new linear in-
depedent elements are generated)

k : = 〈A,Bj | j = 1, 2, . . . ,m〉Lie
= 〈iH0, iHj | j = 1, 2, . . . ,m〉Lie

(4)

as well as by its (potential) symmetries, i.e. the cen-
traliser to the system algebra collecting all terms that
commute jointly with all Hamiltonian operators

k′ := {s ∈ su(N)|[s,Hν ] = 0 ∀ν = 0; 1, 2, . . . ,m} .
(5)

If there are no symmetries, i.e. if the centraliser k′ is
trivial (zero), then the system algebra k is irreducible.
This can easily be checked by determining the di-
mension of the nullspace (kernel) to the corresponding
commutator superoperators (of dimensionN2×N2)—
so it boils down to solving a system of m + 1 homo-
geneous equations in N2 dimensions. Moreover, in
Ref. [Zeier and Schulte-Herbrüggen, 2011] we showed
that a trivial centraliser plus a connected graph im-
ply that the corresponding system algebra is simple.
Since the largest possible Lie closure is su(N), the
system algebra k of an irreducible connected qubit sys-
tem has to be a (proper or improper) simple subalgebra
to su(N). By making heavy use of computer algebra,
in Ref. [Zeier and Schulte-Herbrüggen, 2011] we have
also classified all these simple subalgebras of su(N)
for N = 2n with n ≤ 15 qubits as summarised by the
branching diagrams in Fig. 2 thus extending the known
results from su(9) [MacKay and Patera, 1981; Polack
et al., 2009] to su(32768).
This figure also illustrates that every su(N) withN =

2n has two canonical branches, a symplectic branch
(shown in red) starting with sp(N/2) and an orthogonal
branch (blue) commencing with so(N). Actually, for
odd n ≤ 15, these are the only ones (and we conjecture
that this holds true even beyond 15 qubits). In contrast,
for even n there are always subalgebras so(2n + 2) of
unitary spinor type (shown in black) plus potential oth-
ers (observe the instances of su(4)). — Clearly, if the
(non-trivial) system algebra k of a dynamic system in
question can be ruled out to be on any of these three
branches, then corresponding control system is indeed
fully controllable as will be shown next.
To this end, it is convenient to exclude the symplec-

tic and orthogonal subalgebras in the first place. It is a
task that can again be readily accomplished (after hav-
ing made sure k is irreducible) by determining the di-
mension of the joint null space (over S) to the following
equations for each Hν with ν = 0; 1, 2, . . . ,m

SHt
ν +HνS = 0 (6)

or in its superoperator form

(Hν ⊗ 1l + 1l⊗Hν) vec(S) = 0 , (7)

where by Schur’s Lemma one must have SS̄ = ±1l
[Obata, 1958]. If there is a non-trivial solution for the
(+)-variant, then k ⊆ so(N) is of orthogonal type, if
there is for the (-)-variant, then k ⊆ sp(N/2) is of sym-
plectic type. So if the solution space for both cases (±)
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Figure 1. Graph representation of quantum dynamical control systems: vertices represent two-level systems (qubits), where common colour
and letter code denotes joint local action, while the edges stand for pairwise coupling interactions. White vertices are qubits that are just coupled
to the dynamic system without allowing to be controlled locally. The first and the last graph show no symmetries and their underlying control
system is fully controllable. In contrast, the interior two graphs do exhibit symmetries: the left interior one has a mirror symmetry, while the right
interior one leaves the Pauli operator σz on the upper terminal qubit invariant. These constants of the motion clearly preclude full controllability.
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Figure 2. Branching diagrams showing all the irreducible simple subalgebras of su(N) with N := 2n for n-qubit systems with n ≤ 15
as given in [Zeier and Schulte-Herbrüggen, 2011]. Note that for odd n only the two canonical branches with orthogonal (blue) and symplectic
(red) subalgebras occur. In contrast, for even n there always are unitary spinor-type subalgebras so(2n + 2) and in some instances su(4).
The orthogonal subalgebras are related to fermionic quantum systems, while the symplectic ones relate to bosonic ones as desribed in the text
and shown in Tabs. I and II.

is zero-dimensional (corrresponding to the only solu-
tion being trivial) then k is neither of orthogonal nor
symplectic type.
For odd n ≤ 15, this does in fact already ensure

full controllability, since only n even allows for spinor-
type simple subalgebras. However, these may finally
be excluded by the following powerful theorem of
Ref. [Zeier and Schulte-Herbrüggen, 2011]:

Theorem: A bilinear control system governed by
Hamiltonians {iHν | ν = 0; 1, 2, . . . ,m} with sys-
tem algebra k := 〈iH0, iHj | j = 1, 2, . . . ,m〉Lie is
fully controllable if and only if the joint centraliser to
{(iHν)⊗1l+1l⊗ (iHν) | ν = 0; 1, 2, . . . ,m} in u(N2)
has dimension two.

To sum up, a bilinear (n-qubit) control system as in
Eqn. (1) is fully controllable if and only if all of the
following conditions are satisfied

(1) the system has no symmetries, i.e. k′ is trivial;
(2) the system has a connected coupling graph;
(3) the system algebra k is neither of orthogonal nor of

symplectic type, and finally
(4) the system algebra is not of unitary or spinor-type

or of exceptional type.

While we gave a rigorous proof in Ref. [Zeier and
Schulte-Herbrüggen, 2011], the key arguments can eas-
ily be made intuitive as follows:

(1) symmetries would entail conserved entities (in-
variant one-parameter groups) thus precluding full
controllability;

(2) coupling graphs with several connected compo-
nents preclude that these components can be co-
herently coupled, which, however, is necessary for
full controllability;

(3) orthogonal or symplectic subalgebras are proper
subalgebras to su(N) (for N > 2) and therefore
do not explore all dynamic degrees of freedom of
su(N), and finally

(4) the same holds for unitary or spinor-type or excep-
tional subalgebras of su(N).



By the branching diagrams in Fig. 2 it is immediately
obvious: establishing full controllability boils down to
ensuring the dynamic system is governed by a system
algebra that is irreducible (no symmetries), and sim-
ple (connected coupling graph) and top of the branch.
This shifts the paradigm from the Lie-algebra rank-
condition to easily verifiable symmetry conditions.

2.2 Connection to Quantum Simulation
Recall that fermionic quantum systems relate to or-

thogonal system algebras, while bosonic ones relate to
symplectic system agebras. Then the link from con-
trolled quantum systems to quantum simulation be-
comes obvious: the branching diagrams of Fig. 2 also
illustrate that an (irreducible and connected) n-qubit
quantum system is fully controllable if and only if it
can simulate both bosonic as well as fermionic systems.
This is because–clearly–a controlled bilinear dynamic

system A can simulate another system B if and only if
for the system algebras one has kA ⊇ kB . Moreover,
given a fixed Hilbert spaceH,A simulates B efficiently
(i.e. with least state-space overhead in H) if for any
interlacing system I with system algebra kI satisfying
kA ⊇ kI ⊇ kB one must have either kI = kA or kI = kB
or (trivially) both.
For illustration, consider an n-qubit nearest-neighbour

coupled Heisenberg-XX spin chain with single local
controls. Then Tab. I shows that a single control-
lable qubit at one end suffices to simulate a fermionic
system with quadratic interactions on n levels (gov-
erned by so(2n + 1), while local controls on both
ends are required to simulate quadratic fermionic sys-
tems on n + 1 levels with system algebra so(2n + 2).
Most remarkably, if the controllable qubit is shifted
to the second position, one gets dynamic degrees of
freedom scaling exponentially in the number of qubits
in the chain. This is by virtue of the system alge-
bras so(2n) or sp(2n−1), which most noticeably re-
sult depending on the length of the n-qubit chain: if
n(mod 4) ∈ {0, 1} the system is fermionic (so(2n)),
while for n(mod 4) ∈ {2, 3} the system is bosonic
(sp(2n−1)) [Zeier and Schulte-Herbrüggen, 2011]. It
is not until two adjacent qubits can be coherently con-
trolled (as su(4)) that the Heisenberg-XX spin chains
become fully controllable [Burgarth et al., 2009].
Moreover, Tab. II illustrates the power of classifying

dynamic systems by symmetries and thereby in terms
of their system Lie algebras: it turns out that joint con-
trols on all the local qubits simultaneously suffice to
even simulate effective three-body interactions (usually
never occuring naturally), provided the Ising-ZZ cou-
pling in odd-membered spin chains can be designed to
have opposite signs on the two branches reaching out
from the central spin.

2.3 Open Systems
While in closed systems there is a particularly simple

characterisation of reachable sets in terms of the system

algebra k generating the Lie group K := 〈exp(k)〉 and
the corresponding group orbit reading

Reach ρ0 = OK(ρ0) := {Kρ0K† |K ∈ K ⊆ SU(N)}
(8)

in open quantum systems it is considerably more in-
tricate to estimate the rechable sets. Just for unital
systems (i.e. those with fixed point proportional to 1l)
which are further simplified by the (hopelessly idealis-
ing) assumption that all coherent controls are infinitely
fast in the sense of

〈iHj | j = 1, 2, . . . ,m〉Lie = su(N) (9)

one finds by the seminal work of [Uhlmann, 1971] and
[Ando, 1989] on majorisation that

Reach ρ0 ⊆ {ρ ∈ pos1 | ρ≺ρ0} (10)

as recently pointed out more explicitly in [Yuan, 2010].
However, this simple characterisation becomes hope-
lessly inaccurate in all physically more realistic scenar-
ios, where the drift Hamiltonian H0 is necessary to en-
sure full controllability in the sense of

〈iH0, iHj | j = 1, 2, . . . ,m〉Lie = su(N) . (11)

In these experimentally more realistic and hence highly
relevant cases, we have recently characterised the dy-
namic system in terms of the underlying Lie wedge w,
i.e. the generating set of the dynamic system Lie semi-
group S of irreversible (Markovian) time evolution in
Refs. [Dirr et al., 2009; O’Meara et al., 2011]. Here the
reachable sets can be conveniently and more accurately
be approximated by

Reach ρ0 = S vec ρ0 where

S ' eA1eA2 · · · eA`
(12)

with A1, A2, . . . , A` ∈ w and where usually few fac-
tors suffice to give a good estimate.

3 Applications
Building upon [Khaneja et al., 2005; Schulte-

Herbrüggen et al., 2005], recently we have lined
up all the principle numerical algorithms into a
unified programming framework DYNAMO [Machnes
et al., 2011]. Their respective control problems
follow a general line: subject to the equation of
motion (1) a target function f(Xtarget, X0) :=

Re tr{X†tX0} is to be maximised over all admissi-
ble (piece-wise constant) control vectors uj(t) :=
(uj(0), uj(τ), uj(2τ), . . . , uj(Mτ = T )). this turns
a control vector (pulse sequence) from an initial guess
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Figure 3. Numerical optimal control schemes turn an initial guess
of a contrl vector (left panels) into optimised control vectors by
gradient-based first or second-order updates, which may be done con-
currently, in a hybrid fashion, or sequentially. Our new DYNAMO
programme package [Machnes et al., 2011] offers all these options in
a unified modular way.

into an optimised shape by following first-order gradi-
ents (or second-order increments) to all the time slices
of the control vector as shown in Fig. 3, which may
be done sequentially [Krotov and Feldman, 1983; Kro-
tov, 1996; Sklarz and Tannor, 2006; Singer et al.,
2010], or concurrently [Khaneja et al., 2005; Schulte-
Herbrüggen et al., 2005] or in the newly unified version
DYNAMO allowing hybrids as well as switches on-the-
fly from one scheme to another one [Machnes et al.,
2011].
These numerical schemes have been put to good use

for steering quantum systems (in the explicit experi-
mental parameter setting) such as to optimise

(1) the transfer between quantum states (pure or non-
pure) [Khaneja et al., 2005],

(2) the fidelity of a unitary quantum gate to be synthe-
sised in closed systems [Schulte-Herbrüggen et al.,
2005; Spörl et al., 2007],

(3) the gate fidelity in the presence of Markovian re-
laxation [Schulte-Herbrüggen et al., 2011], and
also

(4) the gate fidelity in the presence of non-Markovian
relaxation [Rebentrost et al., 2009]

In the lecture, examples for spin systems [Schulte-
Herbrüggen et al., 2005; Spörl et al., 2007] as well as
Josephson elements [Spörl et al., 2007] have been il-
lustrated in all detail. For optimising quantum maps
in open systems, time-optimal controls have been

compared to relaxation-optimised controls [Schulte-
Herbrüggen et al., 2011] in the light of an algebraic
interpretation [Dirr et al., 2009].

4 Conclusion
We have put some of our recent results into the context

of engineering and steering quantum dynamical sys-
tems with high precision. In doing so, we have shown
how a quantum systems theory emerges, which im-
mediately links to many applications in quantum sim-
ulation and control without sacrificing mathematical
rigour. We have pointed out how to optimise the ex-
plicit steerings (control amplitudes) for manipulating
closed and open (Markovian and non-Markovian) sys-
tems in finite dimensions. In particular during the talk
a plethora of such examples was presented.

Acknowledgements
It is a pleasure to thank the organisers of the

PHYSCON 2011 for their hospitality and the fruitful
atmosphere throughout te conference. In particular, I
would like to acknowledge my coworkers Dr. Robert
Zeier, Dr. Uwe Sander, and M.Sc. Corey O’Meara
for their contributions to the quoted papers [Zeier and
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Table 1. Heisenberg-xx spin chains with a single control on one end (or both) can simulate either fermionic or bosonic systems depending on
the chain length as summarised in [Zeier and Schulte-Herbrüggen, 2011]. Local control over two adjacent qubits is required to make the system
fully controllable (last row).

system type fermionic bosonic system Lie algebra

n-spins- 12 number of levels ———– order of coupling ———–

A

XX XX n quadratic (i.e. 2) – so(2n+ 1)

A B

XX XX n+ 1 quadratic (i.e. 2) – so(2n+ 2)

A

XX XX

for n mod 4 ∈ {0, 1} n up to n – so(2n)

for n mod 4 ∈ {2, 3} n – up to n sp(2n−1)

A B

XX XX n up to n up to n su(2n)

Table 2. Ising-zz spin chains with joint controls on all the qubits locally can simulate bosonic systems provided the coupling constants of the
right and left branches leaving the cetral qubit have opposite signs as is also summarised in [Zeier and Schulte-Herbrüggen, 2011]. Note that
even physically unavailable three-body interactions can be simulated by such systems. The system algebras given on the right specify that for a
given chain length all systems are dynamically equivalent, which otherwise would be extremely difficult to analyse.

system type bosonic system Lie algebra

n = 2k + 1 spins- 12 number of levels coupling order sp(2n−1)

A A A

+ZZ –ZZ

n = 3 up to n = 3 sp(8/2)

A B A

+ZZ –ZZ

—”— —”— —”—

A A A A A

+ZZ +ZZ –ZZ –ZZ

n = 5 up to n = 5 sp(32/2)

A A B A A

+ZZ +ZZ –ZZ –ZZ

—”— —”— —”—

A B C B A
+ZZ +ZZ –ZZ –ZZ

—”— —”— —”—

A A A A B —”— —”— —”—

A A A B A —”— —”— —”—

A B C D E —”— —”— —”—

A B C D E —”— —”— —”—


