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Abstract: In spite of successful proofs of stability and even successful demon-
strations of performance, the eventual use of Model Reference Adaptive Control
(MRAC) methodologies in practical real world systems has met a rather strong
resistance from practitioners and has remained very limited. Apparently, the
practitioners have a hard time understanding the conditions that can guarantee
stable operations of adaptive control systems under realistic operational envi-
ronments. Besides, it is difficult to measure the robustness of adaptive control
system stability and allow it to be compared with the common and widely used
measure of phase margin and gain margin that is utilized by present, mainly
LTI, controllers. Furthermore, recent counterexamples seem to show that adaptive
systems may diverge even when all required conditions are fulfilled. This paper
attempts to revisit the fundamental qualities of the common direct model reference
adaptive control methodology based on gradient and to show that some of its
basic drawbacks have been addressed and eliminated within the so-called Simple
Adaptive Control methodology. The sufficient conditions that guarantee stability
are clearly stated and lead to similarly clear proofs of stability, and the previous
counterexamples to MRAC become just simple, successful, and stable applications
of SAC. Copyright c©2007 IFAC.
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1. INTRODUCTION

We will consider the square, multiple-input-multiple-
output, system with the realization

ẋ(t) = Ax(t) + Bu(t) (1)

y(t) = Cx(t) (2)

Here, x is the n-dimensional state vector, u is
the m-dimensional input vector and y is the m-
dimensional output vector, and A, B, and C are
matrices of corresponding dimensions. Because
only a nominal model of the real-world plant
is usually available for the control design and,
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furthermore, plant parameters may vary under
various operational and environmental conditions,
adaptive control methodologies seemed to be the
natural solution for the problem. However, the
customary stationary controllers have developed
verification techniques that allow the designer to
evaluate the stability robustness of the controlled
system. Even if the actual gain deviates from
the nominal control gains Knom, the designer
has a very clear idea about the admissible do-
main Kmin < K < KMAX of possible devia-
tion of the actual constant gain K that would
not result in destruction of system stability. The
adaptive control methodologies, as any other con-
trol techniques that use nonstationary controllers,
cannot guarantee stability if the stationary gain
K is replaced by an arbitrary, nonstationary,
gain K(t) even if it follows the same condition



Kmin < K(t) < KMAX . Therefore, new rules
and specialized methods for the proofs of stability
and measure of its robustness had to be devel-
oped. Section 2 gives a short review of classical
Model Reference Adaptive Control (MRAC) and
its many contributions to stability analysis, along
with some implied drawbacks related to the so-
called “unmodeled dynamics” and to the need for
“sufficient excitation” that have prevented MRAC
from being used in many real-world applications
in spite of its qualities. Section 3 presents the
various passivity and “almost passivity” condi-
tions that are used to proof stability with adaptive
controllers. Section 4 mentions some counterex-
amples that diverge under MRAC, and therefore
seem to demonstrate that previous assumptions
may not be sufficient to guarantee stability with
MRAC. Section 5 presents the Simple Adaptive
Control (SAC) methodology which initially was
developed as a simplified and modest alternative
to MRAC, yet ultimately seems to eliminate the
drawbacks related to MRAC. Section 6 shows
that the almost passivity conditions are indeed
sufficient to guarantee robust stability with SAC.
Because the control community at large tries to
avoid using adaptive controllers, the example of
Section 7 illustrates the danger involved with the
belief that LTI system theory and its safety gain
and phase margin can be used in real-world chang-
ing environments. Section 8 then shows how ba-
sic stabilizability properties of plants and parallel
feedforward can be used so SAC can be applied
with systems that do not inherently satisfy the ba-
sic “almost passivity” conditions. Finally, Section
9 then shows how a simple σ-term can be used
to add the necessary robustness so SAC can be
applied in those situations where perfect tracking
is not possible.

2. MODEL REFERENCE ADAPTIVE
CONTROL

First attempts at using adaptive control tech-
niques were developed during the sixties and
were based on intuitive and even ingenious ideas
(Whitaker, 1959), (Osborn, Whitaker and Kezer,
1961), yet they ended in failure, mainly because
at the time there was not very much knowledge
of stability analysis with nonstationary parame-
ters. Modern methods of stability analysis that
had been developed by Lyapunov at the start
of the 19th century were not broadly known,
much less used, in the West (Hahn, 1967). Af-
ter the initial problems with adaptive control
techniques of the sixties, stability analysis has
become a center point in new developments re-
lated to adaptive control. Participation of some
of the leading researchers in the control com-
munity at the time, such as Narendra, Landau,

Åström, Kokotovic̀, Goodwin, Morse, Grimble
and many others, added a remarkable contri-
bution to the better modeling and to the un-
derstanding of adaptive control methodologies
(Monopoli, 1974), (vanAmerongen and TenCate,
1975), (Feuer and Morse, 1978), (Morse, 1980),
(Landau, 1974), (Landau, 1979), (Narendra and
Valavani, 1978), (Narendra and Valavani, 1979),
(Narendra, Lin and Valavani, 1980), (Narendra
and Annaswami, 1989), (Goodwin, Ramadge and
Caines, 1980), (Goodwin and Sin, 1984), (Astrom,
1983), (Astrom and Wittenmark, 1989), (Ioannou
and Kokotovic, 1983), (Moir and Grimble, 1984),
(Mareels, 1984), (Kreiselmayer and Anderson,
1986), (Ortega and Yu, 1987), (Sastri and Bodson,
1989), (Ioannou and Sun, 1996), (Bitmead, Gevers
and Wertz, 1990), (Wellstead and Zarrop, 1991),
(Krstic, Kanellakopoulos and Kokotovic, 1995).
New tools and techniques have been developed
and used and they finally led to successful proofs
of stability, mainly based on the Lyapunov sta-
bility approach. The standard methodology was
the Model Reference Adaptive Control approach
which, as its name states, basically requires the
possibly “bad” plant to follow the behavior of a
“good” Model Reference.

˙xm(t) = Amxm(t) + Bmum(t) (3)

ym(t) = Cmxm(t) (4)

The control signal that feeds the plant is a linear
combination of the Model state variables

u(t) =
∑

kixmi(t) = Kxm(t) (5)

If the plant parameters were fully known, one
could compute the corresponding controller gains
that would force the plant to asymptotically fol-
low the Model, or

x(t) → xm(t) (6)

and correspondingly

y(t) → ym(t) (7)

Because the entire plant state ultimately behaves
exactly as the model state, MRAC is sometimes
interpreted as Pole-Zero placing. However, in this
report we only relate to MRAC in relation to its
main aim, namely, the plant output should follow
the desired behavior represented by the model
output.

When the plant parameters are not (entirely)
known, one is naturally lead to use adaptive
control gains. The basic idea is that the plant is
fed a control signal that is a linear combination
of the model state through some gains. If all
gains are correct, the entire plant state vector
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Fig. 1. Schematic representation of MRAC

would follow the model exactly. If, however, not
all gains are correct, the measured plant output
differs from the output of the Model Reference.
The resulting “tracking error”

ey(t) = ym(t)− y(t) (8)

can be monitored and used to generate adaptive
gains. The basic idea of the adaptation is like
that: assume that one component of the control
signal that is fed to the plant is coming from the
variable xmi through the gain kxi. If the gain is
not perfectly correct, this component contributes
to the tracking error and therefore the tracking
error and the component xmi are correlated. This
correlation is used to generate the adaptive gain

k̇xi(t) = γiey(t)xmi(t) (9)

where γi is a parameter that affects the rate
of adaptation. The adaptation should continues
until the correlation diminishes and ultimately
vanishes and therefore the gain derivative tends
to zero and the gain itself is (hopefully) supposed
to ultimately reach a constant value. In vectorial
form,

K̇x(t) = Σγiey(t)xmi(t) = ey(t)xT
m(t)Γx (10)

u(t) = Σkxixmi(t) = Kx(t)xm(t) (11)

As Figure 1 below shows, there are various other
components that can be added to improve the
performance of the MRAC system such as

K̇u(t) = ey(t)uT
m(t)Γu (12)

so the total control signal is

u(t) = Kx(t)xm(t) + Ku(t)um(t) (13)

Many other elements, such as adaptive observers,
etc., can be added to this basic MRAC scheme and
can be found in the reference cited above, yet here

we want to pursue just the basic Model Reference
idea.

This approach was able to generate some rigorous
proofs of stability that showed that not only the
tracking error but even the entire state error

ex(t) = xm(t)− x(t) (14)

asymptotically vanishes. This result implied that
the plant behavior would asymptotically repro-
duce the stable model behavior and would ul-
timately achieve the desired performance repre-
sented by the ideal Model Reference. In partic-
ular, the Lyapunov stability technique revealed
the prior conditions that had to be satisfied in
order to guarantee stability and allowed getting
rigorous proofs of stability of the adaptive control
system. Because along with the dynamics of the
state or the state error, adaptive control systems
have also introduced the adaptive gains dynamics,
the positive definite quadratic Lyapunov function
had to contain both the errors and the adaptive
gains and usually had the form

V (t) = eT
x (t)Pex(t)

+ tr

[(
K(t)− K̃

)
Γ−1

(
K(t)− K̃

)T
]

(15)

Here, K̃ is a set of the ideal gains that could
perform perfect model following if the parameters
were known, and that the adaptive control gains
were supposed to asymptotically reach. Yet, in
spite of successful proofs of stability, very little
use has been made of adaptive control techniques
in practice.

Therefore, we will first discuss some of the prob-
lems that are inherent to the classical MRAC ap-
proach and that are emphasized when one intends
to use adaptive methods with such applications
as large flexible space structures and similar large
scale systems. First, the fact that the entire plant
state vector is supposed to follow the behavior of
the model state vector immediately implies that
the model is basically supposed to be of the same
order as the plant. If this is not the case, various
problems have been shown to appear, including
total instability. As real world plants are usually of
very high order when compared with the nominal
plant model, a so-called “unmodeled dynamics”
must inherently be considered in the context of
this approach. The developers of adaptive control
techniques were able to show that the adaptive
system still demonstrates stability robustness in
spite of the “unmodeled dynamics,” yet to this
end they required that the “unmodeled dynam-
ics” be “sufficiently small.” Furthermore, if any
state variable of the Model reference is zero, the
corresponding adaptive gain is also zero. Also, if
the model reaches a steady state, some of the



various adaptive gains loose their independence,
and this point raises the need for some “persistent
excitation” or “sufficient excitation.” It should be
emphasized that the need for sufficiently large
Models, sufficiently small “unmodeled dynamics”
and “sufficient excitation” appear even if one only
intends to guarantee the mere stability of the
plant, before even mentioning performance. Fi-
nally, when all these basic conditions are satisfied,
the stability of the adaptive control could initially
be proved only if the original plant was Strictly
Passive (SP), which in LTI systems implies that
its input-output transfer function is Strictly Posi-
tive Real (SPR). Passivity-like conditions appear
in various forms in different presentations, so they
deserve a special section.

3. ON VARIOUS PASSIVITY CONDITIONS
REQUIRED IN ADAPTIVE CONTROL

Positive Realness or, more precise, Passivity of
systems is a useful systems property that has
been first introduced in networks (Cauer, 1958),
and probably introduced to dynamic systems by
Kalman (Kalman, 1964) in the context of opti-
mality. It has also shown its usefulness in the
context of “absolute stability” (Popov, 1962). As
we already mentioned, Positive Realness has also
been shown to be useful for the proof of stability
with adaptive controllers. Here, we present the
state-space representation of the SPR conditions
which seems to be the most useful for successful
proofs of stability using Lyapunov stability theory.

Definition 1. A linear time-invariant system with
a state-space realization {A, B, C}, where A ∈
Rn∗n, B ∈ Rn∗m, C ∈ Rm∗n, with the m*m
transfer function T (s) = C(sI − A)−1B, is called
“strictly passive (SP)” and its transfer function
“strictly positive real (SPR)” if there exist two
positive definite symmetric (PDS) matrices, P
and Q, such that the following two relations are
simultaneously satisfied:

PA + AT P = −Q (16)

PB = CT (17)

The relation between the strict passivity condi-
tions (16)-(17) and the strict positive realness
of the corresponding transfer function has been
treated elsewhere (Ioannou and Tao, 1987), (Wen,
1988). Relation (16) is the common algebraic Lya-
punov equation and shows that an SPR system
is asymptotically stable. One can also show that
conditions (16)-(17) also imply that the system
is strictly minimum-phase, yet simultaneous satis-
faction of both conditions (16)-(17) is far from be-
ing guaranteed even in stable and minimum-phase

systems, and therefore the SPR condition seemed
much too demanding. (Indeed, some colleagues
in the general control community use to ask: if
the system is already asymptotically stable and
minimum-phase, why would one need adaptive
controllers?)

For a long time, the passivity condition had been
considered very restrictive (and rather obscure)
and at some point the adaptive control community
has been trying to drop it and to do without
it. The passivity condition has been somewhat
mitigated when it was shown that stability with
adaptive controllers could be guaranteed even
for the non-SPR system (1)-(2) if there exists a
constant output feedback gain (unknown and not
needed for implementation), such that a fictitious
closed-loop system with the system matrix

AK = A−BK̃eC (18)

is SPR, namely, it satisfy the passivity conditions
(16)-(17). Because in this case the original system
(1)-(2) was only separated by a simple constant
output feedback from strict passivity, it was called
“Almost Strictly Positive Real (ASPR)” or “Al-
most Strictly Passive (ASP)” (Barkana and Kauf-
man, 1985), (Barkana, 1987). Note that such ASP
systems are sometimes called (Fradkov, 2003),
(FradkovHill, 1998) “feedback passive” or “passi-
fiable.” However, as we will show that any stabiliz-
able system is also passifiable via parallel feedfor-
ward, those systems that are only at the distance
of a constant feedback gain from Strict Passivity
deserve a special name.

At the time, this “mitigation” of the passivity con-
ditions did not make a great impression, because
it was still not clear what systems would satisfy
the new conditions. (Some even claimed that if
SPR seemed to be another name for the void class
of systems, the “new” class of ASPR was only
adding the boundary.) Nonetheless, some ideas
were available. Because a constant output gain
feedback was supposed to stabilize the system, it
seemed apparent that the original plant was not
required to be stable. Also, because it was known
that SPR systems were minimum-phase and that
the product CB is Positive Definite Symmetric
(PDS), it was intuitive to assume that minimum-
phase systems with Positive Definite Symmet-
ric CB were natural ASPR candidates (Barkana
and Kaufman, 1985). Indeed, simple Root-locus
techniques were sufficient to proof this result in
SISO systems, and many examples of minimum-
phase MIMO systems with CB product PDS were
shown to be ASPR (Barkana and Kaufman, 1985),
(Barkana, 1987). However, it was not clear how
many of such MIMO system actually were ASPR.
Because the ASPR property can be stated as a
simple condition and because it is the main con-



dition needed to guarantee stability with adaptive
controllers, it is useful to present here the ASPR
theorem for the general multi-input-multi-output
systems:

Theorem 1. Any linear time-invariant system with
the state-space realization {A, B, C}, where A ∈
Rn∗n B ∈ Rn∗m ,C ∈ Rm∗n, with the m*m
transfer function T (s) = C(sI − A)−1B, that is
minimum-phase and where the matrical product
CB is PDS, is “almost strictly passive (ASP)” and
its transfer function “almost strictly positive real
(ASPR).”

Although the original plant is not SPR, a (ficti-
tious) closed-loop system satisfies the SPR condi-
tions, or in other words, there exist two positive
definite symmetric (PDS) matrices, P and Q, and
a positive definite gain such that the following two
relations are simultaneously satisfied:

P (A−BK̃eC) + (A−BK̃eC)T P = −Q (19)

PB = CT (20)

As a matter of fact, a proof of Theorem 1 had been
available in the Russian literature (Fradkov, 1976)
since 1976 yet it was not known in the West. Here,
many other works have later independently redis-
covered, reformulated, and further developed the
idea (see (Barkana, 2004) and references therein
for a brief history and for a simple and direct, al-
gebraic, proof of this important statement). Even
as late as 1999, this simple ASPR condition was
still presented as some algebraic condition (Huang
et al., 1999) that might look obscure to the con-
trol practitioner. On the other hand, (Huang et
al., 1999) managed to add an important con-
tribution and emphasize the special property of
ASPR systems by proving that if a system cannot
be made SPR via constant output feedback, no
dynamic feedback can render it SPR.

Theorem 1 has thus managed to explain the rather
obscure passivity conditions with the help of new
conditions that could be understood by control
practitioners. It is useful to notice an important
property that may makes an ASPR system to be
a good candidate for stable adaptive control: if a
plant is minimum-phase and its input-output ma-
trical product CB is Positive Definite Symmetric
(PDS) it is stabilizable via some static Positive
Definite (PD) output feedback. Furthermore, if
the output feedback gain is increased beyond some
minimal value, the system remains stable even if
the gain increase is nonstationary. The required
positivity of the product CB could be expected,
as it seemed to be a generalization of the sign of
the transfer function that allows using negative
feedback in SISO systems. However, although at

the time it seemed to be absolutely necessary for
the ASPR conditions, the required CB symmetry
proved to be rather difficult to fulfill in practice, in
particular in adaptive control systems where the
plant parameters are not known.

After many attempts that have ended in failure,
a recent publication has managed to eliminate
the need for a symmetric CB. First, it was easy
to observe that the Lyapunov function remains
positive definite if the gain term is rewritten as
follows:

V (t) = eT
x (t)Pex(t) (21)

+ tr

[
S

(
K(t)− K̃

)
Γ−1

(
K(t)− K̃

)T

ST

]

Here, S is any nonsingular matrix. This new for-
mulation allowed the extension of useful passivity-
like properties to a new class of systems that was
called W-ASPR, where W = ST S, through the
following definition:

Definition 2. Any linear time-invariant system
with state-space realization {A, B, C}, where
A ∈ Rn∗n, B ∈ Rn∗m, C ∈ Rm∗n, with the
m*m transfer function T (s) = C(sI − A)−1B, is
called “W-almost strictly passive (WASP)” and
its transfer function “W-almost strictly positive
real (WASPR),” if there exist three positive defi-
nite symmetric (PDS) matrices, P, Q, and W, and
a positive definite gain K̃e such that the following
two conditions are simultaneously satisfied:

P (A−BK̃eC) + (A−BK̃eC)T P = −Q (22)

PB = CT WT (23)

This new definition can be used with the following
theorem (Barkana, Teixeira and Hsu, 2006):

Theorem 2. Any minimum-phase LTI system with
a state-space realization {A, B, C}, where A ∈
Rn∗n, B ∈ Rn∗m, C ∈ Rm∗n, with the m*m
transfer function T (s) = C(sI−A)−1B, where the
positive definite and not necessarily symmetric
matrical product CB is diagonalizable is WASP
in accord with Definition 2.

Thus, (Barkana, Teixeira and Hsu, 2006) had
managed to mitigate a result that has been around
for more than 40 years. Nevertheless, it was very
tempting to try to eliminate any restriction be-
sides the positivity of CB. This new result was ”al-
most” made possible by observing that, although
the product of two PD matrices is not necessarily
PD, the trace of the product is PD if at least
one of the two matrices is PDS. Therefore, the



Lyapunov function remains positive definite if the
second term in it is again rewritten as follows:

V (t) = eT
x (t)Pex(t)

+ tr

[
W

(
K(t)− K̃

)
Γ−1

(
K(t)− K̃

)T
]

(24)

even if W is only positive definite yet not necessar-
ily symmetric. However, we will show that in order
to allow the Lyapunov derivative to be negative
definite or semidefinite, the proof of stability does
require the symmetry of W.

As we showed above, new developments have
simplified the (sufficient?) conditions that, along
with limits on the “unmodeled dynamics” and
with “sufficient excitation,” would be sufficient to
allow rigorous and successful proofs of stability
with adaptive controllers. Still, it appears that
the ASPR condition was not sufficient to always
guarantee the stability of MRAC. Besides, al-
though successful proofs of stability usually ended
showing that the following errors vanish asymp-
totically, it is rather commonly accepted that the
adaptive gains may not converge to any specific
limit at all, even if they are guaranteed to be
bounded. Furthermore, some recent counterexam-
ples seem to show that MRAC systems may di-
verge even when all previously assumed sufficient
conditions are satisfied (Hsu and Costa, 1999).

4. COUNTEREXAMPLES TO MODEL
REFERENCE ADAPTIVE CONTROL

In the examples of (Hsu and Costa, 1999), a 2*2
stable plant with CB positive definite is required
to follow the behavior of a stable model of same
order. In fact both the plant and the model
have the same diagonal system matrices with
negative eigenvalues, and only the input-output
matrix differentiates between the two. The plant,
that appears in a 2D adaptive robotic visual
servoing with uncalibrated camera, is defined by
the system matrices

A =
[−a 0

0 −a

]
; B =

[
cosϕ sinϕ
−hsinϕ hcosϕ

]
(25)

C =
[

1 0
0 1

]
(26)

It is shown (Hsu and Costa, 1999) that standard
MRAC systems become unstable even though the
MRAC system was supposed to be stable because
there was no “unmodeled dynamics,” there was
“sufficient excitation,” and the assumably “suf-
ficient” passivity conditions were also satisfied.
We note that (Hsu and Costa, 1999) shows ways
to avoid the problem and, using various kinds of
prior knowledge, other solutions have also been
proposed.

5. SIMPLE ADAPTIVE CONTROL (SAC), OR
THE SIMPLIFIED APPROACH TO MODEL

REFERENCE ADAPTIVE CONTROL

Various kinds of additional prior knowledge have
been used and many solutions and additions have
been proposed to overcome some of the various
drawbacks of the basic MRAC algorithm. How-
ever, this paper sticks to the very basic idea of
Model Following. Next sections will show that
those basically ingenious adaptive control ideas
and the systematic stability analysis they intro-
duced had finally led to adaptive control sys-
tems that can guarantee stability robustness along
with superior performance when compared with
alternative, non-adaptive, methodologies. In this
section we will first assume that at least one of
the passivity conditions presented above holds
and will deal with a particular methodology that
managed to eliminate the need for the plant order
and therefore can mitigate the problems related
to “unmodeled dynamics” and “persistent excita-
tion.” Subsequent sections will then extend the
feasibility of the methodology to those real-world
systems that do not inherently satisfy the passiv-
ity conditions.

The beginning of the alternative adaptive con-
trol approach can be found in the intense activ-
ities at Rensselaer (RPI) during 1978-1983. At
that time, such researchers as Kaufman, Sobel,
Barkana, Balas, Wen, and others (Sobel, Kauf-
man and Mabus, 1982), (Kaufman et al., 1981),
(Barkana and Kaufman, 1982), (Barkana, Kauf-
man and Balas, 1983), (Barkana, 1983), (Wen and
Balas, 1989) were trying to use customary adap-
tive control techniques with large order MIMO
systems, such as planes, large flexible structures,
etc. It did not take long to realize that it was
impossible to even think of controllers of the same
order as the plant, or even of the order of a “nom-
inal” plant. Besides, those were inherently MIMO
systems, while customary MRAC techniques at
the time were only dealing with SISO systems.
Because now the very reduced-order model could
not be considered to be even close to the plant, one
could not consider full model state following, so
this aim was naturally replaced by output model
following. Furthermore, as the (possibly unstable)
large-order plant state could not be compared
with the reduced-order model state, the model
could not be thought to guarantee asymptotic
stability of the plant any longer.

In order to allow stability of the reduced order
adaptive control system, new adaptive control
components that were not deemed to be needed by
the customary MRAC had to be considered. We
will show that this “small” addition had an as-
tonishing effect towards the successful application
of the modified MRAC. In brief, as it was known



that stability of adaptive control systems required
that the plant be stabilizable via a constant gain
feedback, the natural question was why not using
this direct output feedback.

Following this idea, an additional adaptive output
feedback term was added to the adaptive algo-
rithm that otherwise is very similar to the usual
MRAC algorithms, namely,

u(t) = Keey(t) + Kxxm(t) + Kuum(t)

= K(t)r(t) (27)

where we denote the reference vector

K(t) =
[
Ke(t) Kx(t) Ku(t)

]
(28)

Subsequently in this paper, it will be shown that
the new approach uses the model as a Command
Generator and therefore it is sometime called
Adaptive Command Generator Tracker. Because
it also uses low-order models and controllers, it
was ultimately called Simple Adaptive Control
(SAC). Before we discuss the differences between
the new SAC approach and to adaptive control
classical MRAC, it is useful to first dwell over the
special role of the direct output feedback term.
If the plant parameters were known, one could
choose an appropriate gain K̃e and stabilize the
plant via constant output feedback control

u(t) = −K̃ey(t) (29)

As we already mentioned above, it was known
that an ASPR system (or, as we now know, a
minimum-phase plant with appropriate CB prod-
uct) could be stabilized by a positive definite
output feedback gain. Furthermore, it was known
that ASPR systems are high-gain stable, so sta-
bility of the plant is maintained if the gain value
happens to go arbitrarily high beyond some mini-
mal value. Whenever one may have sufficient prior
knowledge to assume that the plant is ASPR, yet
does not have sufficient knowledge to choose a
good control gain, one can use the output itself
to generate the adaptive gain by the rule:

K̇y(t) = y(t)yT (t)Γy (30)

and the control

u(t) = Ky(t)y(t) (31)

In the more general case when the plant is re-
quired to follow the output of the model, one
would use the tracking error to generate the adap-
tive gain

K̇e(t) = ey(t)eT
y (t)Γe (32)

and the control

u(t) = Ke(t)ey(t) (33)

We will show how this adaptive gain addition
is able to avoid some of the most difficult in-
herent problems related to the standard MRAC
and to add robustness to its stability. Although
it was developed as a natural compensation for
the low-order models and was successfully applied
at Rensselaer as just one element of the Sim-
ple (Model Reference) Adaptive Control method-
ology, it is worth mentioning that, similarly to
the first proof of the ASPR property, the ori-
gins of this specific adaptive gain can again be
found in an early Fradkov’s work (Fradkov, 1976)
in the Russian literature. Besides, later on this
gain received a second birth and became very
popular after 1983 in the context of adaptive
control “when the sign of high-frequency gain
is unknown.” In this context (Nussbaum, 1983),
(Morse, 1984), (Heyman, Lewis and Meyer, 1985)
and after a very rigorous mathematical treatment
(Byrnes and Willems, 1984), it also received a
new name and it is sometimes called the Byrnes-
Willems gain. Its useful properties have been thor-
oughly researched and some may even call this one
adaptive gain Simple Adaptive Control as they
were apparently able to show that it can do “al-
most” everything (Ilchman, Owens and Pratzel-
Wolters, 1987), (Mareels and Polderman, 1996).
Indeed, if an ASPR system is high-gain stable,
it seems very attractive to let the adaptive gain
increase to even very high values in order to
achieve good performance that is represented by
small tracking errors. However, although at first
thought one may find that high gains are very
attractive, a second thought and some more en-
gineering experience with the real world applica-
tions make it clear that high gains may lead to
saturations and may excite vibrations and other
disturbances. These disturbances may not have
appeared in the nominal plant model that was
used for design and may not be felt in the real-
world plant unless one uses those very high gains.
Furthermore, as the motor or the plant dynamics
would always require an input signal in order to
keep moving and tracking the desired trajectory,
it is quite clear that the tracking error cannot
be zero or very small unless one uses very high
gains indeed. Designers of tracking systems know
that feedforward signals that come from the de-
sired trajectory can help achieving low-error or
even perfect tracking without requiring the use
of dangerously high gains (and, correspondingly,
exceedingly high bandwidth) in the closed loop.
In the non-adaptive world, feedforward could be
problematic because unlike the feedback loop, any
errors in the feedforward parameters are directly
and entirely transmitted to the output tracking
error. Here, the adaptive control methodology can
demonstrate an important advantage on the non-
adaptive techniques, because the feedforward pa-
rameters are finely tuned by the very tracking er-
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ror they intend to minimize. The issues discussed
here and the need for feedforward again seem to
show the intrinsic importance of the basic Model
Following idea, and again point to the need for a
model. However, the difference between the model
used by SAC and the Model Reference used by the
standard MRAC is that this time the so-called
“Model” does not necessarily have to reproduce
the plant besides incorporating the desired input-
output behavior of the plant. At the extreme, it
could be just a first-order pole that performs a
reasonable step-response, or otherwise a higher
order system, just sufficiently high to generate
the desired trajectory. As it generates the com-
mand, this “model” can also be called “Command
Generator” (Brousard and Berry, 1978) and the
corresponding technique “Command Generator
Tracker (CGT).” In summary, the adaptive con-
trol system monitors all available data, namely,
the tracking error, the model states and the model
input command and uses them to generate the
adaptive control signal (Figure 2)

K̇e(t) = ey(t)eT
y (t)Γe (34)

K̇x(t) = ey(t)xT
m(t)Γx (35)

K̇u(t) = ey(t)uT
m(t)Γu (36)

that using the concise notations (27)-(28) gives

K̇(t) = ey(t)rT (t)Γ (37)

and the control

u(t) = K(t)r(t) (38)

It is worth noting that, initially, SAC seemed
to be a very modest alternative to MRAC with
apparently very modest aims and that also seemed
to be very restricted by new conditions. Although
at the time it probably was the only adaptive
technique that could have been used in MIMO
systems and with such large systems as large

flexible structures, and therefore was quite imme-
diately adopted by many researchers and practi-
tioners, the SAC approach got a cold reception
and for a long time has been largely ignored by
the mainstream adaptive control. In retrospective
(besides some lack of good selling) at the time this
cold reception had some good reasons. Although
it was called “simple” as it was quite simple to
implement, the theory around SAC was not simple
and many tools that were needed to support its
qualities and that, slowly and certainly, revealed
themselves over the year, were still missing. It
subsequently not only required developing new
analysis tools but also, probably even more im-
portant, better expertise at understanding their
implications before they could be properly used
so that they ultimately managed to highlight the
very useful properties of SAC. Finally, based on
developments that had spanned over more than 25
years, we will attempt to show that SAC is in fact
the stable MRAC, because right from the begin-
ning it avoids some difficulties that are inherent in
the standard MRAC. First, it is useful to notice
that because there is no attempt at comparison
between the order or the states of the plant and
the model, there is no “unmodeled dynamics.”
Also, because basically the stability of the system
rests on the direct output feedback adaptive gain,
the model is immaterial in this context and of
course there is no need to mention “sufficient
excitation.” Besides, as we will later show and as it
was observed by almost all practitioners that have
tried to use it, SAC proved to be good control.
While the standard MRAC may have to explain
why it does not work when it is supposed to work,
SAC may have to explain why it does work even in
cases when the (sufficient) conditions are not fully
satisfied. Although, similarly to any nonstationary
control, in Adaptive Control it is very difficult to
find the very minimal conditions that would keep
the system stable, it can be shown why SAC may
demonstrate some robustness even when the basic
sufficient conditions are not satisfied. We note
that this last point is just an observation based
on experience, yet we must also note that in those
cases when the basic conditions are fulfilled, they
are always sufficient to guarantee the stability of
the adaptive control system, with no exceptions
and no counterexamples. In this respect, one can
show that the MRAC “counterexamples” become
just trivial, stable, and well behaving examples for
SAC.

6. PROOF OF STABILITY OF SIMPLE
ADAPTIVE CONTROL

One can easily prove that the WASP conditions
are sufficient to prove stability using just the sim-
ple adaptive output feedback gain (32) (Barkana,



Teixeira and Hsu, 2006). However, in order to
avoid any misunderstandings related to the role of
the unknown matrix W , here we chose to present
a rigorous proof of stability for the general output
model tracking case. As usual in adaptive con-
trol, one first assumes that the underlying fully
deterministic output model tracking problem is
solvable. A recent publication (Barkana, 2005a)
shows that if the Model Reference uses a step
input in order to generate the desired trajectory,
the underlying tracking problem is always solv-
able. If, instead, the model input command is
itself generated by an unknown system of order
nu, the model is required to be sufficiently large
to accommodate this command (Barkana, 1983),
(Kaufman, Barkana and Sobel, 1998), or

nm + m ≥ nu (39)

We assume that the plant to be controlled is
minimum-phase and that the CB product is Pos-
itive Definite and diagonalizable though not nec-
essarily symmetric. As we showed, the plant is
WASP according to Definition 2, so it satisfies
conditions (22)-(23). Under these assumptions one
can use the Lyapunov function (24). Differenti-
ating (24) and using the W-passivity relations,
finally leads to the following derivative of the
Lyapunov function (Appendix A)

V̇ (t) = −eT
x (t)Qex(t) (40)

One can see that V̇ (t) in (40) is negative def-
inite with respect to ex(t), yet only negative
semidefinite with respect to the entire state-
space {ex(t),K(t)}. A direct result of Lyapunov
stability theory is that all dynamic values are
bounded. According to LaSalle’s Invariance Prin-
ciple (Kaufman, Barkana and Sobel, 1998), all
state-variables and adaptive gains are bounded
and the system ultimately ends within the domain
defined by V̇ (t) ≡ 0. Because V̇ (t) is negative def-
inite in ex(t), the system thus ends with ex(t) ≡ 0,
that in turn implies ey(t) ≡ 0. In other words, the
adaptive control system demonstrates asymptotic
convergence of the state and output error and
boundedness of the adaptive gains.

6.1 On gain convergence, basic conditions for
stability, optimality, robustness, etc.

Some particularly interesting questions may arise
during the proof of stability. First, although the
Lyapunov function was carefully selected to con-
tain both the state error and the adaptive gains,
the derivative only contains the state error. It
appears as if the successful proof of stability has
“managed” to eliminate any possibly negative ef-
fect of the adaptive gains. One is then entitled to

ask what positive role the adaptive gains play (be-
sides not having negative effects). This is just one
more illustration of the difficulties related to the
analysis of nonlinear systems. Indeed, although
Lyapunov stability theory manages to prove sta-
bility, it cannot and does not provide all answers.
Besides, as potential counterexamples seem to
show, although the tracking error and the deriva-
tive of the adaptive gains tend to vanish, this mere
result does not necessarily imply, as one might
have initially thought, that the adaptive gains
would reach a constant value or even a limit at
all. If the adaptive gain happens to be a function
such as k(t) = sin(ln t) (suggested to us by Mark
Balas), its derivative is k̇(t) = cos(ln t)/t. In this
example one can see that although the derivative
tends to vanish in time, the gain k(t) itself does
not reach any limit at all. Therefore, the common
opinion that seems to be accepted among experts
is that the adaptive gains do not seem to converge
unless the presence of some “sufficient” excitation
can be guaranteed. This seem to imply that even
in the most ideal, perfect following, situations, the
adaptive control gains may continue wandering for
ever.

However, recent results have shown that these
open questions and problems are only apparent.
First, even if it is not a direct result of Lyapunov
analysis, one can show that the adaptive control
gains always perform a steepest descent minimiza-
tion of the tracking error (Barkana, 2005a). Al-
though this “minimum” could still increase with-
out bound in general, if the stability of the system
were not guaranteed, yet this is not the case with
SAC.

Second, with respect to the final gain values,
when one tests an adaptive controller with a
given plant, one first assumes that an underlying
LTI solution for the ideal control gains exists,
and then the adaptive controller is supposed to
find those gains at the end of the adaptation.
If the plant is known, one can first solve the
deterministic tracking problem and find the ideal
control gains. Then, the designer proceeds with
the implementation of the adaptive controller and
expects it to converge to the pre-computed ideal
solution. In practice, however, one observes that,
even though the tracking errors do vanish, the
adaptive gains do not seem to converge. Even
in those cases when the gains do demonstrate
convergence, their final values are far from the
ideal solution that was computed for the LTI case,
and this happens even when the LTI solution is
“unique.”

This point may give the practitioner pause, be-
cause if there is such an uncertainty about the
adaptive gains even in the ideal situations, what
can be said in more difficult situations, in the pres-



ence of noise, etc.? This question has proved to be
a very serious challenge and has remained open
for more than 30 years, yet recently it was finally
answered. It is worth mentioning that although
extensions of LaSalle’s Invariance Principle for
non-autonomous systems have been around for
quite some time (Artstein, 1977), (LaSalle, 1981),
besides very few exceptions they don’t seem to
be widely used in Adaptive Control or in non-
linear control systems in general. This fact could
be partially explained by the fact that the re-
sults are of a very general character. However,
their proper interpretation and application to-
wards the development of new basic analysis tools
such as combining a Modified Invariance Principle
with Gromwall-Bellman Lemma (Barkana, 1983),
(Barkana, 2005a), (Kaufman, Barkana and So-
bel, 1998), finally managed to provide the solution
to this problem.

It was shown that if the adaptive control gains
do not reach the “unique” solution that the pre-
liminary LTI design seemed to suggest, it is not
because something was wrong with the adaptive
controller, but rather because the adaptive control
can go beyond the LTI design. The existence of a
“general” LTI solution is useful in facilitating and
shorting the proof of stability, yet it is not needed
for the convergence of the adaptive controller.
While the sought after stationary controller must
provide a fixed set of constant gains that would fit
any input commands, the adaptive controller only
needs that specific set of control gains that corre-
spond to the particular input command. Even in
those cases when the general LTI solution does
not exist, the particular solution that the adap-
tive controller needs does exist (Barkana, 2005a).
However, it complicates the stability analysis be-
cause it was shown that those particular solutions
may allow perfect following only after a transient
that adds supplementary terms to the differen-
tial equations of motion. As a consequence, the
stability analysis may end with the derivative of
Lyapunov function being

V̇ (t) = W1(t) + W2(t)

=−eT
x (t)Qex(t) + F (x, t)eAmt (41)

Although the derivative (41) still contains the
negative definite term with respect to the error
state, it also contains a transient term that is
not negative, so the derivative is not necessarily
negative definite or even semidefinite. Apparently,
(41) cannot be used for any decision on stability.
However, although the decision on stability is
not immediate, the Modified Invariance Principle
reveals that all bounded solutions of the adaptive
system reach asymptotically the domain defined
by

W1(t) = −eT
x (t)Qex(t) ≡ 0 (42)

Therefore, one must find out what those “bounded
trajectories” are and it is the role of Gromwall-
Bellman Lemma to actually show that, under the
WASP assumption, all trajectories are bounded.
Therefore, the previous conclusions on asymptot-
ically perfect tracking remain valid.

Moreover, because the gains also reach that do-
main in space where perfect tracking is possi-
ble, this approach has also finally provided the
answer to the (previously open) question on the
adaptive gain convergence. Even if one assumes
that the final asymptotically perfect tracking may
occur while the adaptive gains continue to wan-
der, one can show that the assumably nonstation-
ary gains satisfy a linear differential equitation
with constant coefficients and their solution is a
summation of generalized exponential functions
((Barkana, 2005a) and Appendix B). This partial
conclusion immediately shows that such nonlin-
ear “counterexample” gains as that we presented
above are, maybe, nice and tough mathematical
challenges, yet they cannot be solutions of, and
thus are actually immaterial for, the SAC track-
ing problem. Furthermore, because the gains are
bounded, they can only be combinations of con-
stants and converging exponentials, so they must
ultimately reach constant values. Therefore, we
were finally able to show (at least within the scope
of SAC) that the adaptive control gains do ulti-
mately reach a set of stabilizing constant values at
the end of a steepest descent minimization of the
tracking error ((Barkana, 2005a) and Appendix
B).

A recent paper (Barkana, 2007) tests SAC with
a few counterexamples for the standard MRAC
(Hsu and Costa, 1999). The paper shows that
SAC not only maintains stability in all cases that
led to instability with standard MRAC, but also
demonstrates very good performance.

Many practitioners that have tried it have been
impressed with the ease of implementation of
SAC and with its performance even in large and
complex applications. Many examples seem to
show that SAC maintains its stable operation even
in cases when the established sufficient conditions
do not hold. Indeed, conditions for stability of
SAC have been continuously mitigated over the
years, as the two successive definitions of almost
passivity conditions presented in this paper may
show. In order to get another qualitative estimate
on SAC robustness, assume that instead of (1)-(2)
the actual plant is

ẋ(t) = Ax(t) + Bu(t) + f(x) (43)

y(t) = Cx(t) (44)

Assume that the nominal {A, B,C} system is
WASP, while f(x) is some (linear or nonlinear)



component that prevents the satisfaction of the
passivity conditions. If one uses the same Lya-
punov functions (24), instead of (40) one gets for
the stabilization problem

V̇ (t) = −xT (t)Qx(t) + xT (t)Pf(x) (45)

and for the tracking problem

V̇ (t) = −eT
x (t)Qex(t) + eT

x (t)P [f(x)− f(x∗)](46)

where x∗ is the ideal trajectory, as defined in
Appendix A. Note that the derivative of the
Lyapunov function remains negative definite in
terms of x(t) or ex(t), correspondingly, if the
second term in the sum is not too large, as
defined (for example) by the inequality (Torres
and Mehiel, 2006)

||f(x)|| ≤ ||Q||
||P || ||x|| (47)

or

||f(x)− f(x∗)|| ≤ ||Q||
||P || ||x− x∗|| (48)

While until very recently the main effort has been
dedicated to the clarification and relaxation of
the passivity conditions, similar effort is dedicated
now to clarifying the limits of robustness of SAC
when the basic passivity conditions are not en-
tirely satisfied.

Besides, although much effort has been dedi-
cated to clarification of passivity concepts in
the context of Adaptive Control of stationary
continuous-time systems, similar effort has been
dedicated to extending these concepts to discrete-
time (Barkana, 2005c) and nonstationary and
nonlinear systems (Barkana, 2005d), (Bobtsov
and Nagovitsina, 2007).

7. ON “SAFE” GAIN SCHEDULING VS.
LACK OF STABILITY NORMS FOR

ADAPTIVE CONTROL

Although the use of nonstationary gains that
would adapt to the specific and momentary needs
of the control systems is attractive, the some-
what uncertain conditions that would guarantee
stability, and in particular the lack of verifiable
norms for the stability robustness of adaptive
control systems has kept their use in real-world
application very low. On the other hand, the
stability robustness of linear time invariant (LTI)
controllers in an LTI world could always be mea-
sured in such customary practical terms as gain-
margin and phase margin. Even in a changing
world, when it is known that the plant parameters
could change as a function of internal or external
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Fig. 3. Plant Root Locus

environmental and operational conditions, at the
present time most designers would prefer using
constant control gains and, if forced to, gain-
scheduling as a function of some measure of the
changing operational conditions. Although it is, or
should be, quite clear to the designer that along
with switching from one gain to another one looses
the absolute estimator of stability given by gain
margin and phase margin, experience and, prob-
ably even more, tradition, keep people preferring,
using, and trusting those basically LTI design
methodologies. In order to show that, along with
improved performance, adaptive control can add
to, not destroy, the stability robustness of systems,
we here consider a simple plant, non-minimum
phase yet otherwise open-loop stable system, a
model that fits some missiles and other examples.
The transfer function is

G (s) =
s2 − 0.36

s3 + 1.1s2 + s + 0.95
(49)

Although the open loop is theoretically stable
(Figure 3), one wants to use feedback gains in
order to improve the stability and performance of
the system. To this end, one first checks and finds
out that in a given environment, the closed-loop
system remains stable for any positive constant
gain less than 2.64. To make sure the system is far
from instability, one decides to use the constant
gain k=1.3. (One knows that the environmental
conditions may change, and when they do change
one would switch to a different gain). Even if one
knows that in the present conditions the actual
control gain might vary around the nominal value
of 1.3, as long the monitored conditions show that
the gain stays within the “admissible” range 0 -
2.64, there seems to be no reason to worry.

Many tests using constant and even various vari-
able gains indeed seem to show that the closed
loop system maintains its stability. Even when
the missile maneuvering leads to sinusoidal time-
variation around the mid-range value of 1.3,
namely k(t) = 1.3 + asint, where the parameter
’a’ is constant, the system shows stability and
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satisfactory behavior even for a = 0.7 (Figures
4-5).

However, when the sinusoidal variation reached
a = 1.15 (Figures 6-7), the non-stationary gain
leads to total divergence although the gain re-
mains within the so-called “admissible” range!

In spite of the example above, even if one may
not like the lack of robustness with stationary
controllers in changing environments, Adaptive
Control methods do not seem to be an alterna-
tive because the plant used with our example is
non-minimum-phase, fact that would make Adap-
tive Control methodologies unusable. As we show
below, a solution for plants that do not inher-
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ently satisfy the ASPR conditions, including non-
minimum phase, has been available for quite a
while, so we will now present the Parallel Feed-
forward methodology that can be used to allow
applicability of Adaptive Control with almost all
real-world systems.

8. PARALLEL FEEDFORWARD AND
STABILITY OF SIMPLE ADAPTIVE

CONTROL

Using for illustration the example of Section VIII,
assume that KMAX = 2.5 is an estimate of the
highest admissible constant gain that maintains
stability of the system. One would never use this
value because it would not be a good control gain
value. Indeed, we only use the mere knowledge
that a (fictitious) closed-loop system using the
high gain value of 2.5 would still be stable. Instead
of implementing constant output feedback we use
this knowledge in order to augment the system
with a simple Parallel Feedforward Configuration
(PFC) across the plant. If the original plant has
transfer function

G(s) =
B(s)
A(s)

(50)

the closed-loop system would be

GCL(s) =
B(s)

A(s) + KB(s)
(51)

and would be asymptotically stable. The aug-
mented system using the inverse of the stabilizing
gain D = 1

K is

Ga(s) =
B(s)
A(s)

+
1
K

(52)

or

Ga(s) =
A(s) + KB(s)

KA(s)
(53)

and if the closed-look system would be stable, one
can see that the augmented system is minimum-
phase (Figure 8). Note that although we would
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Fig. 8. Augmented Plant Root Locus

never suggest using direct input-output gains in
parallel with the plant, this is a simple and useful
illustration that may facilitate the understanding
of the basic idea. Also, although in this paper we
only dealt (and will continue to deal) with strictly
causal systems, for this specific case it is useful to
recall that a minimum-phase plant with relative
degree 0 (zero) is also ASPR. As (53) shows,
one could use the inverse of any stabilizing gain
in order to get ASPR configurations. However,
any such addition is added ballast to the original
plant output, so using the inverse of the maximal
allowed gain adds the minimal possible alteration
to the plant output. The augmented system looks
as follows: The augmented system has three poles
and three zeros and all zeros are minimum-phase.
Such a system cannot become unstable, no mat-
ter how large the constant gain k becomes, yet
because it is ASPR one can also show that it
would also stay stable no matter how large the
nonstationary adaptive gain k(t) becomes. One
can easily see that the parallel feedforward has
made the effective control gain that affects the
plant to be:

keff (t) =
k(t)

1 + Dk(t)
=

k(t)

1 + k(t)
KMAX

=
1

1
k(t) + 1

KMAX

(54)

One can see that the effective gain is always below
the maximal admissible constant gain (Figure 9).
While this qualitative demonstration intends to
provide some intuition to the designer that is
used to estimate stability in terms of gain and
phase margins, rigorous proofs of stability using
the Lyapunov-LaSalle techniques and almost pas-
sivity conditions are also available and provide
the necessary rigorous proof of stability. As we
already mentioned above, the constant parallel
feedforward has only been presented here for a
first intuitive illustration. In practice, however,
one does not want to use direct input-output
across the plant that would require solving im-
plicit loops that include the adaptive gain com-
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Fig. 10. Plant with PD Controller

putations. Therefore, we go to the next step that
takes us to the ubiquitous PD controllers. In prac-
tice, many control systems use some form of PD
controller, along with other additions that may
be needed to improve performance. While the
additions are needed to achieve the desired per-
formance, in many cases the PD controller alone
is sufficient to stabilize the plant. In our case, a PD
controller H(s) would make the Root-locus plot to
look like (Figure 10) The system is asymptotically
stable for any fixed gain within the “admissible”
range 0 - 2.66, so we again choose KMAX = 2.5
as an estimate of the highest admissible constant
gain that maintains stability of the system. This
time however we use D(s) = 1/H(s), the inverse
of the PD controller, as the parallel feedforward
across the plant. The Root-locus of the resulting
augmented plant is shown in Figure 11. This is a
strictly causal system with 4 poles and 3 strictly
minimum-phase zeros and is therefore, ASPR. Al-
though the original plant was non-minimum phase
and this fact would usually forbid using adaptive
controllers, here one can apply SAC and be sure
that stability and asymptotically perfect tracking
of the augmented system is guaranteed. The only
open question is how well the actual plant output
performs. In this respect, the maximal admissi-
ble gain with fictitious PD (or with any other
fictitious controller) defines how small the added
ballast is and how close the actual output is to the
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Fig. 11. Augmented Plant with strictly causal
PFC

augmented output. The example here is a very
bad system and was only used to illustrate the
problems one may encounter using constant gain
in changing environments and cannot be expected
to result in good behavior without performing
much more study and basic control design. The
examples above have been used to present a
simple principle: if the system can be stabilized
by the controller H(s), then the augmented sys-
tem Ga(s) = G(s) + H−1(s) is minimum-phase.
Proper selection of the relative degree of H−1(s)
will thus render the augmented system ASPR
(Barkana, 1987). This last statement implies that
“passivability” of systems is actually dual to sta-
bilizability. If a stabilizing controller is known,
its inverse in parallel with the plant can make
the augmented system ASPR. When sufficient
prior knowledge is available to design a stabiliz-
ing controller, some researchers prefer to use this
knowledge and directly design the corresponding
parallel feedforward (Iwai and Mizumoto, 1992)
or ”shunt” (Fradkov, 1994). When the “plant” is
a differential equation, it is easy to assume that
the order or the relative degree is available and
then a stabilizing controller or the parallel feedfor-
ward can be implemented. However, in real world,
where the “plant” could be a plane, a flexible
structure or a ship, the available knowledge is the
result of some wind-tunnel or other experimental
tests that may result in some approximate fre-
quency response or approximate modeling, suffi-
cient to allow some control design, yet in general
do not provide reliable knowledge on the order or
relative degree of the real plant. On the other hand
(although it may very much want some adaptive
control to help improving performance if it only
could be trusted), the control community actually
continues to control real-world systems with fixed
controllers. Therefore, in our opinion the ques-
tion “How can you find a stabilizing controller?”
should not be given any excessive emphasis. In
any case, if there is sufficient prior knowledge to
directly design the feedforward there is definitely
sufficient information to design a stabilizing con-

figuration, and vice versa. Note that the example
of this section is a bad system that was on purpose
selected to provide a counterexample for the sta-
bility with assumably “constant” gains. Although
the stability of the augmented system with adap-
tive control is guaranteed, the plant output may
not behave very well, even with the added paral-
lel feedforward. In any case, even in those cases
when the parallel feedforward is too large to al-
low good performance as monitored at the actual
plant output, the behavior of the, possibly both
unstable and non-minimum phase, plant within
the augmented system is stable and it was shown
to allow stable identification schemes (Johansson
and Robertsson, 2002) and thus, lead to better un-
derstanding of the plant towards better, adaptive
or non-adaptive, control design. Still, as recently
shown with a non-minimumphase UAV example
(Barkana, 2005b) and with many other realistic
examples (Kaufman, Barkana and Sobel, 1998),
prior knowledge usually available for design allows
using basic preliminary design and then very small
additions to the plant that not only result in
robust stability of the adaptive control system
even with originally non-minimum phase plants,
but that also lead to performance that is ulti-
mately superior to other control methodologies.
A recent publication uses the parallel feedforward
compensator for safe tuning of MIMO Adaptive
PID Controllers (Iwai, Mizumoto, Nakashima and
Kumon, 2007) and another (Ben Yamin, Yaesh
and Shaked, 2007) shows how to implement Sim-
ple Adaptive Controllers with guaranteed H∞
performance.

9. ROBUSTNESS OF SIMPLE ADAPTIVE
CONTROL WITH DISTURBANCES

The presentation so far showed that a simple
adaptive controller can guarantee stability of any
system that is minimum-phase if the CB prod-
uct is Positive Definite and diagonalizable if not
symmetric. In case these conditions do not inher-
ently hold, basic knowledge on the stabilizability
properties of the plant, usually known, can be
used to fulfill them via Parallel Feedforward Con-
figurations. Therefore, the proposed methodology
seems to fit almost any case where asymptotically
perfect output tracking is possible. However, after
we presented the eulogy of the adaptive output
feedback gain (32), it is about time to also present
what could become its demise, if not properly
treated. When persistent disturbances such as
random noise or very high frequency vibrations
are present, perfect tracking is not possible. Even
when the disturbance is known and various vari-
ations of the Internal Model Principle can be
devised (Fradkov and Andrievsky, 2007) to filter
them out, some residual tracking error may always



be present. While tracking with small final errors
could be acceptable, it is clear that the adaptive
gain term (32) would, slowly but certainly, in-
crease without limit. Indeed, theoretically, ASPR
systems maintain stability with arbitrarily high
gains and in some cases (in case of missiles, for
example) the adaptive system mission could end
even before problems are even observed. How-
ever, allowing the build-up of high gains that do
not come in response to any actual requirement
is not acceptable, because in practice they may
lead to numerical problems and saturation effects.
However, very early we observed how the robust-
ness of SAC with disturbances can be guaran-
teed by adding Ioannou’s σ-term (Ioannou and
Kokotovic, 1983) with the error adaptive gain that
would now be

K̇e(t) = ey(t)eT
y (t)Γe − σKe(t) (55)

Finally, this new addition is literally making SAC
an adaptive controller (see (Barkana, 2005a) and
(Kaufman, Barkana and Sobel, 1998) and ref-
erences therein): while the control gains always
perform a steepest descent minimization of the
tracking error, the error gain defined in (55) goes
up-and-down fitting the right gain to the right
situation in accord with the changing operational
needs.

10. CONCLUSIONS AND FUTURE WORKS

This report presented the various components and
main properties of a special version of Model Ref-
erence Adaptive Control, called Simple Adaptive
Control. Initially, because it was attempting to
use low-order models with large order plants and
also because of some initial lack of mathematical
tools, SAC scope and performance seemed to be
very modest when compared with the customary
MRAC. However, with the development of special
mathematical analysis tools along with the grad-
ually deeper understanding of its special qualities,
SAC appears to have ultimately become the stable
MRAC.

Appendix A. PROOF OF STABILITY

The underlying deterministic tracking problem
assumes that there exists an “ideal control”

u∗(t) = K̃xxm(t) + K̃uum(t) (A.1)

that could keep the plant along an “ideal tra-
jectory” that performs perfect tracking. In other
words, the ideal plant

ẋ∗(t) = Ax∗(t) + Bu∗(t) (A.2)

y∗(t) = Cx∗(t) (A.3)

moves along “ideal trajectories” such that

y∗(t) = ym(t) (A.4)

We assume that the underlying LTI problem is
solvable and thus, that some ideal gains K̃x and
K̃u exist (Barkana, 2005a). Because the plant
and the model can have different dimensions, the
“following error” is defined to be the difference
between the ideal and the actual plant state

ex(t) = x∗(t)− x(t) (A.5)

and correspondingly

ey(t) = ym(t)− y(t) = y∗(t)− y(t)

= Cx∗(t)− Cx(t) = Cex(t) (A.6)

Differentiating ex(t) gives:

ėx(t) = ẋ∗(t)− ẋ(t) (A.7)

= Ax∗(t) + Bu∗(t)−Ax(t)−Bu(t)

ėx(t) = Aex(t)−Bu(t) + Bu∗(t) (A.8)

ėx(t) = Aex(t)−B(Keey(t) + Kxxm(t) + Kuum(t))

+ B(K̃xxm(t) + K̃uum(t)) (A.9)

Adding and subtracting BK̃eey(t) = BK̃eCex(t)
above gives

ėx(t) =
(
A−BK̃eC

)
ex(t)−B

(
K(t)− K̃

)
r(t)(A.10)

where for convenience we denoted

K̃ =
[
K̃e K̃x K̃

]
(A.11)

The derivative of the Lyapunov function (24) is

V̇ (t) = eT
x (t)P ėx(t) + ėT

x (t)Pex(t)

+tr
[
WK̇(t)Γ−1

(
K(t)− K̃

)]
(A.12)

+tr
[
W

(
K(t)− K̃

)
Γ−1K̇(t)T

]

Using relations (22)-(23) gives

V̇ (t) = xT (t)
[
PAK + AT

KP
]
x(t)

−xT CT W
(
K − K̃

)
Cx− xT CT

(
K − K̃

)
WCx

+xT CT W
(
K − K̃

)
Cx + xT CT

(
K − K̃

)
WCx

(A.13)

The last two terms in (A.13), originating in the
derivative of the adaptive gain terms in V(t), can-
cel the previous, possibly troubling, non-positive,
terms and thus lead to the Lyapunov derivative

•
V (t) = −eT

x (t)Qex(t) (A.14)



Appendix B. GAIN CONVERGENCE

Let the linear time-invariant plant (1)-(2) track
the output of the model (3)-(4). In general, in
the past we have assumed that the model uses
step inputs to generate the desired command
(Barkana, 2005a). For the more general command
following case, we assume that the command itself
is generated by an unknown input generator

ẋu(t) = Auxu(t) (B.1)

u(t) = Cuxu(t) (B.2)

We want to check what the ultimate adaptive
control gains that perform perfect tracking could
be. When the error is zero, the input control
to the plant is a linear combination of available
measures.

u(t) = Kxxm(t) + Kuum(t) (B.3)

Assume that the plant moves along such “ideal
trajectories” and the nonstationary gains are such
that the plant output y∗(t) = Cx∗(t) perfectly
tracks the model output, namely, ey(t) = 0, or

Cx∗(t) = Cmxm(t) (B.4)

Differentiating (B.4) gives

Cẋ∗(t) = Cmẋm(t) (B.5)

or

CAx∗(t) + CBu(t) = CmAmxm(t) + CmBmum(t)(B.6)

CAx∗(t) + CBKxxm(t) + CBKuum(t)

= CmAmxm(t) + CmBmum(t) (B.7)

CAx∗(t) = [CmAm − CBKx]xm(t)

+ [CmBm − CBKu] um(t) (B.8)

We assume that CA is maximal rank and get

x∗(t) =

(CA)T
(
CA (CA)T

)−1

[CmAm − CBKx(t)] xm(t)

+ (CA)T
(
CA (CA)T

)−1

[CmBm − CBKu(t)] um(t)
+ x∗0(t)

(B.9)

or

x∗(t) = Sx(t)xm(t) + Su(t)um(t) + x∗0(t) (B.10)

Here,

Sx(t) = (CA)T
(
CA (CA)T

)−1

[CmAm − CBKx(t)](B.11)

Su(t) = (CA)T
(
CA (CA)T

)−1

[CmBm − CBKu(t)](B.12)

and x∗0(t) represents those functions that satisfy

CAx∗0(t) ≡ 0 (B.13)

and are solutions of the plant differential equation

ẋ∗0(t) = Ax∗0(t) (B.14)

that result in

ẏ∗0(t) = Cẋ∗0(t) = CAx∗0(t) ≡ 0. (B.15)

Note that the differential equation (B.14) of the
supplementary term x∗0(t) does not contain con-
trol terms because those would be included in the
other terms in (B.10). Because CB is nonsingular
one gets from (B.4)

u(t) = (CB)−1 [CmAmxm(t) + CmBmum(t)− CAx∗(t)](B.16)

or

u(t) = Kx(t)xm(t) + Ku(t)um(t) (B.17)

Here

Kx(t) = (CB)−1 (CmAm − CASx(t)) (B.18)

Ku(t) = (CB)−1 (CmBm − CASu(t)) (B.19)

ẋ∗(t) = Sx(t)ẋm(t) + Ṡx(t)xm(t)
+Su(t)u̇m(t) + Ṡu(t)um(t) + ẋ∗0(t)

(B.20)

ẋ∗(t) = Sx(t)Amxm(t) + Sx(t)Bmum(t)
+Ṡx(t)xm(t) + Su(t)CuAuxu(t)
+Ṡu(t)Cuxu(t) + ẋ∗0(t)

(B.21)

ẋ∗(t) = Ax∗(t) + Bu(t) = ASx(t)xm(t)
+ASu(t)um(t) + Ax∗0(t)
+BKx(t)xm(t) + BKu(t)um(t)

(B.22)

ASx(t)xm(t) + ASu(t)um(t) + Ax∗0(t)
+BKx(t)xm(t) + BKu(t)um(t)
= Sx(t)Amxm(t) + Sx(t)BmCuxu(t)
+Ṡx(t)xm(t) + Su(t)CuAuxu(t)
+Ṡu(t)Cuxu(t) + ẋ∗0(t)

(B.23)

The terms in x∗0(t) and ẋ∗0(t) cancel each other
and we get

ASx(t)xm(t) + ASu(t)CuAuxu(t)
+B (CB)−1 (CmAm − CASx(t))xm(t)
+B (CB)−1 (CmBm − CASu(t)) CuAuxu(t)
= Sx(t)Amxm(t) + Sx(t)BmCuxu(t)
+Ṡx(t)xm(t) + Su(t)CuAuxu(t)
+Ṡu(t)Cuxu(t)

(B.24)

and finally

Mxxm(t) + Muxu(t) = 0 (B.25)



Here,

Mx = Ṡx(t)−ASx(t) + Sx(t)Am

−B (CB)−1 (CmAm − CASx(t))
(B.26)

Mu = Ṡu(t)Cu + Sx(t)BmCu + Su(t)CuAu

−ASu(t)CuAu

−B (CB)−1 (CmBm − CASu(t)) CuAu

(B.27)

We first consider the case when the signals xm(t)
and xm(t) are “sufficiently rich” so the equations
can be separated and the differential equations of
Sx(t) and Su(t) are

Ṡx(t)−
[
I −B (CB)−1

C
]
ASx(t) + Sx(t)Am

= B (CB)−1
CmAm

(B.28)

Ṡu(t)Cu +
[
I −

(
I −B (CB)−1

C
)

A
]
Su(t)CuAu

= −Sx(t)BmCu + B (CB)−1
CmBmCuAu

(B.29)

One can see that (B.28) is a linear differential
equation with constant coefficients, excited by a
constant forcing function. Therefore, the solution
of (B.28) is a combination of generalized exponen-
tials of the form

Sxij(t) =
∑

ctmebt sin (βt + ϕ) (B.30)

Equation (B.29) is then a linear differential equa-
tion with constant coefficients excited by exponen-
tial and constant forcing functions, and its solu-
tion is therefore also a combination of generalized
exponentials. Now, from (B.18) and (B.19) one
can see that the components of the control gains
are also combinations of constants and generalized
exponentials of the form

kij(t) = aij +
∑

ctmebt sin (βt + ϕ) (B.31)

On the other hand, because one knows that the
adaptive gains that perform asymptotically per-
fect tracking are bounded, any divergent exponen-
tials are excluded. What is left is a combination of
converging exponentials, constants and eventually
stable sinusoidal functions. However, because we
know that the derivative of the adaptive gain van-
ishes in time, steady sinusoidal functions are also
excluded. Therefore, those adaptive gains that can
perform perfect tracking can only be combinations
of constants and converging exponentials that ul-
timately tend to reach a constant limit as time
goes to infinity.

Now we must consider the more general case
when the signals cannot be considered “suffi-
ciently rich.” The solution for the model (3)-(4)
supplied with the command (B.1)-(B.2) has the
form

xm(t) = Exu(t) + eAmtd0 (B.32)

At t = 0 one gets

xm(0) = Exu(0) + d0 (B.33)

d0 = xm(0)− Exu(0) (B.34)

Substituting (B.32) in (3) gives

Eẋu(t) = EAuxu(t) = AmExu(t) + AmeAmtd0

+BmCuxu(t)
(B.35)

(AmE − EAu + BmCu)xu(t) + AmeAmtd0 = 0(B.36)

Therefore, at steady state the model is

xm(t) = Exu(t) (B.37)

where E satisfies the equation

AmE − EAu + BmCu = 0 (B.38)

Substituting (B.38) in (B.28) gives

Mx1Exu(t) + Mx2xu(t) = 0 (B.39)

Here

Mx1 = Ṡx(t)−ASx(t) + Sx(t)Am

−B (CB)−1 (CmAm − CASx(t))
(B.40)

Mx2 = Ṡu(t)Cu + Sx(t)BmCu + Su(t)CuAu

−ASu(t)CuAu

−B (CB)−1 (CmBm − CASu(t)) Cu

(B.41)

Equation (B.41) becomes

M(t)xu(t) = 0 (B.42)

Here

M(t) = Ṡx(t)E + Sx(t)AmE + Sx(t)BmCu

−ASx(t)E + B (CB)−1
CASx(t)E

+Ṡu(t)Cu + Su(t)CuAu + ASu(t)CuAu

+B (CB)−1
CASu(t)Cu

−B (CB)−1
Cm (AmE + BmCu)

(B.43)

and after some algebra

M(t) = Ṡx(t)E + Ṡu(t)Cu

+(Sx(t)E + Su(t)Cu)Au

−
(
I + B (CB)−1

C
)

A (Sx(t)E − Su(t)Cu)

−B (CB)−1
CmEAu

(B.44)

We first use relation (B.44) to again show that the
perfect following problem has many solutions. If
we first choose those solutions that satisfy

Sx(t)E − Su(t)Cu = 0 (B.45)

Su(t)Cu = Sx(t)E = S1 (t) (B.46)

we get

M(t) = Ṡ1(t) + S1(t)−B (CB)−1
CmEAu (B.47)



The equation

Ṡ1(t) + S1(t)−B (CB)−1
CmEAu = 0 (B.48)

is a stable linear differential equation with con-
stant coefficients. Therefore, is given by a com-
bination of exponential function and ultimately
reaches a constant limit, Sf . However, it now
implies that only a linear combination of the ulti-
mate gains satisfies a relation of the form

Sx(t)E = Su(t)Cu = Sf (B.49)

Similarly only a linear combination of the ultimate
adaptive control gains satisfies a relation of the
form

Kx(t)F + Ku(t)G = Kf (B.50)

While any set of constant gains that satisfy (B.50)
would perform perfect tracking, nonstationary
gains could also do. Moreover, in order to simplify
the equation and show that it has solutions, we
only considered those particular solutions that
satisfy (B.49), yet the selection is almost arbitrary,
and the equation

M(t)xu(t) = 0 (B.51)

has many more solutions than (B.48), in general.
Therefore, any effort of proving ultimate conver-
gence of the adaptive gains actually seems to end
in failure. There is no doubt that, in principle, per-
fect tracking can occur while the bounded time-
varying gains keep wandering across some hyper-
surface described, for example, by (B.50) or by
any corresponding equation. However, although
such solutions for the perfect tracking exist, one
may still ask whether those nonstationary gains
can be the ultimate values of the adaptation
process. Can the steepest descent minimization
end with some ever wandering gains? As we con-
clude below, most certainly, not. First, although
it is hard to translate engineering intuition into
rigorous mathematics, it is ”felt” that the lack
of ”richness” that the perfect following equation
shows does not express the ”richness” of signals
that exists during the entire process of adaptation
up to and until ”just before” perfect tracking. Yet,
somewhat more rigorously, the same argument
that seems to fail the Lyapunov-LaSalle approach
can now be used to redeem it. Along with equation
(B.50) of the ultimate hyper-surface that contains
them, the ultimate adaptive gains are also located
on the hyper-ellipsoid that corresponds to the final
value of the Lyapunov function. If the initial value
of the Lyapunov function is V(t=0) = V0, its final
value is given by

lim
t→∞

V (t) = V0 −
∞∫

0

eT
x (t)Qex (t) dt = Vf (B.52)

or, in case there are transient terms in the Lya-
punov derivative

lim
t→∞

V (t) = V0

−


∞∫

0

eT
x (t)Qex (t) + transient


 dt = Vf

(B.53)

As the errors ultimately vanish and the monotoni-
cally increasing output gain Ke(t) reaches an ideal
stabilizing gain value, the adaptive control gains
are located on the hyper-ellipsoid defined by

trace[(Kx(t)− K̃x)T Γ−1
x (Kx(t)− K̃x)

+ (Ku(t)− K̃u)T Γ−1
u (Ku(t)− K̃u)] = Vf

(B.54)

with the set
{

K̃x, K̃u

}
at its center. Because any

set of constant gains that satisfy the perfect track-
ing equation can play the role of ideal gains set
that is used in the Lyapunov function, choosing
the set

{
K̃x1 , K̃u1

}
finds the final gain on hyper-

ellipsoid with the center in
{

K̃x1 , K̃u1

}
, namely,

trace[(Kx(t)− K̃x1)T Γ−1
x (Kx(t)− K̃x1)

+ (Ku(t)− K̃u1)T Γ−1
u (Ku(t)− K̃u1)]

= Vf1(Ku(t)− K̃u)] = Vf

(B.55)

However, assuming the fictitious set
{

K̃x2 , K̃u2

}

finds the final gain on a different hyper-ellipsoid
with the center in

{
K̃x2 , K̃u2

}
. Therefore, for the

same adaptation process, that starts and ends
with the same values, this thinking experiment
finds the final gains located at the intersection of
infinitely many distinct hyper-ellipsoids, so their
common intersection is a point or a ”line” of
Lebesque measure zero. Although this argument
may requires more polishing, it points to the fact
that, ultimately, the adaptive gains do converge
to a limit. In some cases, the rate of convergence
may be slow and simulations may show the gain
varying for a long-long time. Hence, it is impor-
tant to know the gains do not vary at random and
that, even if sometimes slowly, they certainly tend
to reach their final bounded constant limit.
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