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The problem of controlling oscillations in spatially extended systems is nowadays actual
and important. For microwave electronics devices this task is connected with controlling
characteristics of generated signals. We study the problem of controlling complex dynamics
in a beam-plasma system (�uid model of Pierce diode) based on the concepts of controlling
chaos in the systems with few degrees of freedom. The presented method is connected with
stabilization of unstable homogeneous equilibrium state and the unstable spatio-temporal
periodical states analogous to unstable periodic orbits. Stabilization is realized with the help
of continuous delayed feedback, by the method based on Pyragas [1] works. In the Pyragas
scheme the system is synchronized with its own state taken one orbit period earlier, by
continuous change of control parameter. The most attractive feature of the proposed method
is that the continuous control signal is given to one of the boundaries of the system what
makes this method convenient to use in practice, for example, for microwave beam-plasma
systems.

Pierce diode [2] is a model of beam-plasma system consisting of two plane parallel in�nite
grids pierced by electron beam. The space between the grids is �lled with the neutralizing
ions. The dynamics of this system is de�ned by the so-called Pierce parameter α = ωpL/v0,
where ωp is the plasma frequency. With α > π the instability leads to the appearance of the
virtual cathode in the diode space. At the same time, when α ∼ 3π, the instability is limited
by non-linearity and the electron beam passes through the diode space without appearance
of a virtual cathode. In this case the system can demonstrate di�erent non-linear dynamics,
from periodic to chaotic.

The stationary homogeneous equilibrium state of the electron beam in Pierce diode is
characterized by the following distribution of the space charge potential, density and the
velocity of the electron beam: v̄(x) = 1.0, ρ̄(x) = 1.0, ϕ̄(x) = 0.0.

The continuous delayed feedback is realized by changing the potential of the right
boundary of the system by the signal taken from the �xed point of the diode space.
Practically, this scheme of delaying feedback can be realized, for example, with the help
of delay lines on magnetostatic waves or acoustic waves [3]. Such method allows to select
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Ðèñ. 1: Spatio�temporal dynamics of Pierce diode in chaotic regime (a) and in the regime of

stabilization of the periodic orbit T = 4.173 (b).

the required delay time.
After switching on the continuous feedback the amplitude of autonomous chaotic

oscillations rapidly decrease and stabilization of the unstable state is observed. The
controlling signal in the feedback line becomes rather small in comparison with the signal
before stabilization (near 0.01%) and thus, the regime of chaos control is realized in the
system. As a quantitative characteristics of the stability of the discussed equilibrium state,
the maximum Lyapunov exponent Λ is calculated and its dependance on the feedback
parameters in di�erent regimes is analysed. Another method of controlling which we study
is the stabilization of unstable spatio-temporal states of the system dynamics. They are
analogous to well-known unstable periodic orbits of the chaotic attractor of few-dimensional
systems. The procedure of picking them out includes reconstruction the system attractor
from the time series of the space charge density oscillations. For stabilization of unstable
periodical orbits we take the scheme where the feedback signal is formed as:

ϕ(x = 1.0, t) = fT
fb(t) = K(ρ(xfix, t)− ρ(xfix, t− Tk)) = Kξ(t). (1)

Here Tk is the delay time equal to the period of the kth unstable orbit. Fig. 1 shows the
spatio�temporal dynamics of the system in cases of autonomous oscillations and in the
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regime of stabilization (the value of the space charge density ρ(x, t) is shown by colour
nuances scaling). The arrow and dotted line in b shows the moment of switching on the
delayed feedback. This scheme is e�ective for the stabilization of the unstable orbits with
low periods when the values of the maximum Lyapunov exponent λ and the orbit period τ

ful�l the condition λτ ≤ C, where C is constant depending on the system. We also study
the case of stabilization of the orbits with higher period Tk for which this condition does not
ful�l. The scheme which we consider is a modi�cation of the method described in [4], when
the feedback signal depends not only from the system state at the moment (t − Tk), as it
was in the previous scheme, but also from the states at the moments of time (t−mTk), with
some weight coe�cients. Following this work [4], we show that the described scheme could
be e�ective for controlling dynamics of spatially extended chaotic system.

Conclusion

The method of controlling complex chaotic dynamics of the spatially distributed active
medium �electron beam in Pierce diode� is discussed. The method is based on the ideas
of controlling chaos in non-linear systems with few degree of freedom. The schemes of
continuous delayed feedback, which is used for controlling, allow to stabilize the unstable
equilibrium state of the distributed system and the unstable periodic spatio�temporal states
analogous to the unstable periodic orbits of the chaotic attractor in the systems with
few degree of freedom. The proposed methods can be used to achieve the desired regular
dynamics of electron microwave systems.
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