
PHYSCON 2017, Florence, Italy, 17–19 July, 2017

OPTIMIZATION AND CONTROL THEORY IN SHELL
MODELS OF TURBULENCE

Nagwa Arafa
CMUP, Department of Mathematics

Faculty of Sciences, Porto University
Portugal

nagwaarafa@yahoo.com

Sı́lvio Gama
CMUP, Department of Mathematics

Faculty of Sciences, Porto University
Portugal

smgama@fc.up.pt

Fernando Lobo Pereira
SYSTEC, Faculty of Engineering

Porto University, Portugal
RUDN University, Moscow, Russia

flp@fe.up.pt

Abstract
In this article, we present preliminary work on the

development of a theoretical methodology based on
optimization schemes and on optimal and control ap-
proaches in order to optimize and control the forcing
of turbulence, and we applied this methodology to the
Obukhov and Gledzer-Okhitani-Yamada shell models.
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1 Introduction
Shell models of turbulence were introduced by

Obukhov and Gledzer (see [Obukhov, 1971; Gledzer,
1973; Ditlevsen, 2007]). The original purpose was to
find a particular closure scheme which is able to repro-
duce the Kolmogorov spectrum, [Kolmogorov, 1941a;
Kolmogorov, 1941b; Kolmogorov, 1941c], in terms of
an attractive fixed point of an appropriate set of dif-
ferential equations for the velocity field averaged over
shells in Fourier space, while mimicking the Navier-
Stokes equations, in the sense of preserving some
invariants, by a dynamical system of dimension N ,
say, in the complex-valued time-dependent variables
u
1

(·), u
2

(·), · · · , uN (·), each representing the typical
magnitude of the velocity field on a certain length scale.
These models consist of a set of coupled nonlinear or-

dinary differential equations structurally similar to the
Navier-Stokes equation written in the Fourier space,
but are much simpler, and numerically easier, to inves-
tigate than the original Navier-Stokes equations. For
these models a scaling theory identical to the Kol-
mogorov theory, [Kolmogorov, 1941a; Kolmogorov,
1941b; Kolmogorov, 1941c], has been developed, and
they show the same kind of deviation from the Kol-
mogorov scaling as real turbulent systems do. Under-
standing the behavior of shell models in their own right
is one of the keys to understand the systems governed

by the Navier-Stokes equations. The shell models are
constructed to obey the same conservation laws and
symmetries as the Navier-Stokes equations.

In this article, we develop a theoretical methodology
based on optimal and control approach in order to opti-
mize and control the forcing of turbulence, and discuss
their application to the Obukhov and Gledzer-Okhitani-
Yamada shell models. The goal is to tune the force so
that a given cost functional is minimized. Following
the ideas of [Farazmand et al., 2011], we want to reach
the statistical regime observed in the structure functions
within a certain given and fixed time interval [0, T ].

This article is organized as follows. In Sections 2
and 3, we present, respectively, the Obukhov and
Gledzer-Okhitani-Yamada (GOY) models. The ensu-
ing section is devoted to the mathematical formula-
tion of the optimization problem for the GOY model
and defined a specific steepest descent numerical ap-
proach. Numerical results are also discussed in this
section. Then, in section 5, we formulate the optimiza-
tion problem in an optimal control framework in order
to investigate the issues arising in more complex model
contexts. A maximum principle of the Pontryagin type
is presented and the conditions are discussed having in
mind the explicit computation of the solution for two
initial conditions. Numerical schemes/strategies using
the Maximum Principle for systems with larger dimen-
sions will be discussed in a forthcoming paper.

2 The Obukhov model
Obukhov [Obukhov, 1971] was the first who proposed
a shell model having in mind to find a simple nonlin-
ear dynamic system capable of preserving the volume
invariance in the phase space. Although structurally
similar, this model is not inspired directly from the
Navier-Stokes equations. It possesses quadratic non-
linear terms and linear dissipative terms. If one re-
stricts the nonlinear term to nearest-neighbor interac-



tions, then the time evaluation equation is
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where an’s are the nonlinear interaction coefficients, ⌫
is the viscosity, and only f

1

is nonzero, that is,

fn = f �n,1 , (2)

where � is a Kronecker symbol. In order for the model
to display an energy cascade from large to small scales,
the energy must be injected at the large scales (small
wave-numbers), flow through an inertial range, and be
dissipated at the small scales (large wave-numbers).

3 The Gledzer-Okhitani-Yamada model
The Gledzer model was first proposed as a real-valued

model, [Gledzer, 1973]. Later, [Yamada and Ohki-
tani, 1987] considered its extension to complex-valued
model, where they introduced, for given initial condi-
tions,

Lu = fn, (3)

being Lu the operator defined by:

Lu :=

dun

dt
� ikn(un+1

un+2

� "

q
un�1

un+1

+

"� 1

q2
un�2

un�1

)

⇤
+ ⌫k2nun.

Here, the superscript ⇤ denotes the complex conjuga-
tion, ⌫ is the kinematic viscosity, " is the 2D/3D se-
lector (3D, for " = 1/2), fn the external force applied
to the nth shell, and kn = k

0

qn, being " and q free
parameters.
In [Pisarenko et al., 1993], this model was nick-

named the GOY (Gledzer-Okhitani-Yamada) model.
The reader can find in these references the connection
and the interest of this model associated to the theory
of the dynamic systems, as well as to the theory of the
turbulence. For any solution of GOY model, we define
the structure function [Biferale, 2003],

Sp(kn) ⌘ h|un|pi = C
0

k⇣(p)n ,

where ⇣(p) = p/3 according to the K41 theory (i.e.
without energy-cascade intermittency) and C

0

a non-
dimensional constant of order of unity [Constantin et
al., 1994]. Here, h|un|pi is defined as an average over
time, i.e.,

h|un|pi =
1

T

Z T

0

|un(t)|pdt.

Long numerical runs (hundreds of millions of time
steps), with parameter values N = 25, ⌫ = 5 ⇥ 10

�7,
k
0

= 0.05, and q = 2, and with fn = 0.1(1 + i)�n,0,
determine for ⇣(4) and ⇣(6) the following numerical
values ⇣NV

(4) = 1.26(3), and ⇣NV

(6) = 1.76(5) .
Other values for different p’s can be found in [Biferale,
2003].
Our goal is to find a forcing, fn, which results in a

solution of the GOY with these scaling exponents, but
in a much shorter time interval, say [0, T ]. With this in
mind, consider the following cost functional

J (f) , 1

2T

Z T

0

Z

I

w(t, k)
��Sp(kn)� SNV

p (kn)
��2 dkdt,

where I = [n
1

, n
2

] (1 < n
1

< n
2

< N ) is the iner-
tial range of the shell model. The function w(t, k) is
a positive weight function which normalizes the error��Sp(kn)� SNV

p (kn)
��2 to get a uniform error distribu-

tion over all wave numbers. We may now formulate the
following optimization problem:

min

f2U
J (f),

where U is a suitable function space with a Hilbert
structure. The cost functional J depends on f through
the system of ODE (3).
Our goal is to find a forcing f

opt

2 U that minimizes
the cost functional J .

4 Mathematical formulation of an optimization
problem for the GOY model

The necessary condition characterizing the minimizer
f
opt

of the cost functional is the vanishing of Gâteaux
differential J 0, i.e.

J 0
(fopt, f

0
) = 0,

for all f 0 2 U , where the Gâteaux differential is defined
by

J 0
(f ; f 0

) , lim

�!0

J (f + �f 0
)� J (f)

�
,

if the limit exists. If this limit does in fact exist for all
f 0 2 U , then J is Gâteaux differentiable at f . After
some calculation, it can be shown that

J 0
(f ; f 0

) =
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where u0
n is the solution of the GOY model equation

linearized around the state un , i.e.,
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On the other hand, the Riesz representation theorem,
[Kolmogorov and Fomin, 1999], guarantees the exis-
tence of a unique element rJ which satisfies the iden-
tity

J 0
(f ; f 0

) = hrJ , f 0i.

By using a suitably defined adjoint variable u†, we have

hu†, f 0i = hu†, Lu0i = hL†u†, u0i,

where the adjoint operator L† is
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Now, consider the following decomposition for the
operator L :

Lu0
=
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the matrix A is such that
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where the coefficients of the matrix are given by
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with the boundary conditions

u�1

= u
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= 0,

and the operator C and B given by

Cu0
= u0⇤,

(i.e. C is the complex congugate operator)
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Let us define the operator L in the form

L =

d

dt
+ A,

where

A = �iAC + ⌫B.



We have
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where AH
= A⇤† and the fact that [f(t)g⇤(t)]bt=a van-

ishes due to the boundary conditions was used. Then,
the Gâteaux derivative can be rewritten as J 0

(f ; f 0
) =

hL†u†, u0i. Therefore,

rJ = u†.

Hence, the gradient direction rJ can be conveniently
expressed in terms of the solution to the following ad-
joint system:
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4.1 Numerical strategy
By using the results from the previous section, we can

now delineate a recursive algorithm that the generates
successive updates of the force so that the cost func-
tion J decreases monotonically. Our goal is to find a
forcing f

opt

that minimizes the cost functional J . By
starting with an initial guess f (0), an approximation of

the minimizer can be founded using a gradient-based
descent method of the form

f (n+1)

= f (n)
+ ⌧ (n)ArJ (f (n)

), n = 1, 2, · · · (5)

such that lim

n!1
f (n)

= fopt, where n is the itera-

tion count and ⌧ (n) 2 R� is a constant to be deter-
mined at each iteration (for instance, by the search line
method [Press et al., 2007]). At each iteration, the de-
scent direction ArJ is computed based on the gradi-
ent of cost functional rJ .
To summarize, the optimization process can be ex-

pressed in the following algorithm.

1. Choose an initial guess f (0)

; n = 0.
2. Solve GOY model equation with f = f (n).
3. Solve adjoint equation (4).
4. Obtain the cost functional gradient as rJ = u†.
5. Find parameter ⌧ (n) through line minimization.
6. Update the control variable through (5); n = n+1.
7. Go back to step 2.

5 Maximum principle for the Obukhov model
In this section, we will consider the Obuhkov model

with N = 3 shells. Consider the following optimal
control problem

Minimize J [x, u]

subject to ẋ = F (x) + u
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where the cost functional is defined by
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Here, u is a measurable control with

u
1

2 [�M,M ],



being M > 0, x(0) is the initial state variable value,
and t 2 [0, T ]. The necessary conditions of optimal-
ity in the form of a Maximum Principle of Pontryagin,
[Pontryagin et al., 1962], will be used in order to char-
acterize the solution to the above optimal control prob-
lem.
Let H be the Pontryagin function defined by

H(x, p, u) = pTF (x) + pTu� 1
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2
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By using the maximum condition
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The adjoint system is given by
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In order to illustrate the application of the Maximum
Principle for this optimal control problem, we solve
the two point boundary value problem arising form
the Maximum Principle conditions by using the so-
called shooting methods for the simple case for which
x
1

(0) = x
2

(0) = x
3

(0) = 0.
It is obvious that, in this case we have, we have
x
2

(t) = x
3

(t) = 0, and the dynamics are reduced to
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i.e.,
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Figure 1. Graphics of the adjoint variables for T = 5.

Thus, the adjoint system becomes
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The determination of the adjoint variables p
2

(·) and
p
3

(·) is done by numerical integration, whose result is
shown in Figure 1.



6 Conclusion
As a general conclusion, we note that the theoretical

results reported here point for the possibility of reduc-
ing the computation time so that the systems defined
by shell models rapidly attain the steady state regime in
the phase space where the structure functions are char-
acterized by power laws.
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