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Abstract
In this paper, we discuss the application of two quan-

tum control algorithms, the Krotov’s algorithm and the
Rabitz’s algorithm, to Nuclear Magnetic Resonance
(NMR), based on a numerical method for iterative
optimization. Specifically, we address the problem of
the determination of external optimal pulses (controls)
with minimal cost, over a two-level quantum system.
We use the numerical approximation to find the
optimal control in the case of one control, integrating
the adjoint equations of the Pontryagin Maximum
Principle (PMP), and propose a new algorithm, based
on the algorithms of H. Rabitz et al. and V. F. Krotov
et al., which unifies and generalizes them for the case
of two controls. We compare the efficiency of these
algorithms with the solutions found by analytical
methods.
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1 Introduction
A sample is placed in a uniform and longitudinal static

magnetic field Bz in the direction of the Z axis, align-
ing the magnetic moments of this sample. Then, it is
exposed to variable radio frequency fields along theX-
Y axes, ux(t), uy(t), absorbing the energy through a
sequence of transverse magnetic pulses. The total mag-
netic field to which the sample is subjected is

B(t) = ux(t)~ı+ uy(t)~+Bz~k (1)

When the magnetic moment vector of the system
is transferred to the XY plane, the sequence of
transverse magnetic pulses is stopped, causing the
magnetic moment vector to precess. Repetitions of
this process produce fluctuations in Bz and eventually,

decoherence. The pulse sequence should be as short
as possible to minimize the effects of relaxation, to
optimize the sensitivity to the experiment and the con-
trast of the image. This is achieved by controlling the
sequence of pulses that create a unitary transformation
in the shortest possible time. For Control Theory the
minimization in time of a sequence of pulses equals
the minimization of lengths of trajectories of vector
states (in homogeneous spaces).

We report, on the one hand, the application of two
iterative algorithms, used on Quantum Molecular
Dynamics, to Optimal Control of Two-Level Quantum
Systems with one external electromagnetic field, the
first one due to H. Rabitz and W. Zhu and the second
one due to V. F. Krotov et al. On the other hand, we
have devised an algorithm inspired in [Maday, 2003],
which unifies and generalizes both algorithms for the
case of two external electromagnetic fields. We use
the approach adopted in [D’Alessandro, 2001]. Using
numerical approximation to find the optimal control,
we integrate the adjoint equations of the Pontryagin
Maximum Principle (PMP). It’s important to use an
algorithm with an appropriate performance to solve
the control quantum equations and so, reduce the cost.

A quantum control system describes the dynamics of
a system like an n-level quantum system, governed by
the Schrödinger equation (we set ~ = 1)

d

dt
~ψ(t) = −iH(u(t))~ψ(t) (2)

where the state ~ψ : [0, T ]→ C2 is a vector representing
the unitary ket |ψ〉, T ∈ R, the control u : [0, T ] → R
is the external magnetic field and the energy of the sys-
tem is represented by the HamiltonianH(t), that, in our
case, is the interaction of the spin angular momentum



with the external magnetic field. So, we can write

H(t) = −γS ·B(t) (3)

where S = sx~ı + sy~ + sz~k is the spin angular mo-
mentum operator and γ is the gyromagnetic ratio of the
system ( i.e. the proportionality constant between the
magnetic moment and the angular momentum). There-
fore

H(u(t)) = −γszBz − γsxux(t)− γsyuy(t) (4)

We study the simplest control system of a − 1
2 spin

particle interacting with the magnetic field, neglecting
other interactions. Rescaling the time and denoting
−γszBz = Sz , −γsx = Sx and −γsy = Sy , the state
vector is written as

|ψ(t)〉 = α|+〉+ β|−〉

where |+〉 and |−〉 are the orthonormal eigenvectors
corresponding to eigenvalues +~

2 and−~
2 , respectively,

of Sz . So, in the {|+〉, |−〉} basis, the matrix represen-

ting Sz is Sz =

(
−i 0
0 i

)
. In the same way, Sx =(

0 −i
−i 0

)
, Sy =

(
0 −1
1 0

)
.

2 Problem Statement
Let us consider a single particle with spin − 1

2 . The
ptimal control problem for the pure state is:

d

dt
~ψ(t) = (Sz + ux(t)Sx + uy(t)Sy)~ψ(t)

~ψ(0) =

(
1
0

)
 (5)

with ~ψ = (ψ1, ψ2) : [0, π√
2
] → C2, u : [0, π√

2
] → R a

Lebesgue integrable function, given the final state

~ψ(
π√
2

) =

(
0
i

)
(6)

minimizing the cost functional

J(u) = 〈(ψ)t(
π√
2

)|O |ψ(
π√
2

)〉+
∫ π√

2

0

(u2x(t)+u2y(t)) dt

(7)
where O is the observable with target information:

O = ~ψ(
π√
2

)~ψt(
π√
2

) (8)

which will allow an optimal evolution of the system.
Since span{Sz, Sx, Sy} = su(2) and Sz, Sx, Sy are

orthogonal and linearly independent, the optimal con-
trol for the system (5) with the final condition (6) exists
[D’Alessandro, 2001].
We consider the realification of the system (5):

d

dt
~x = (S̄z + ux(t)S̄x + uy(t)S̄y)~x

~x(0) =


1
0
0
0

 , ~x( π√
2
) =


0
0
0
1


(9)

where S̄z =


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

 , S̄y =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 ,

also S̄x =


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

 , ~x =


Re(ψ1)
Re(ψ2)
Im(ψ1)
Im(ψ2)


2.1 System with one control
In this section we consider the case where the sys-

tem is subjeted to varing external electromagnetic field
along the Y -axis, uy(t), denoted u(t). Let us consider
the system

d

dt
~x = (S̄z + u(t)S̄y)~x

~x(0) =


1
0
0
0

 (10)

min → J(u) = 〈(~x t( π√
2

)|O |~x(
π√
2

)〉+
∫ π√

2

0

u2(t) dt

(11)

2.1.1 Algorithm I: Rabitz et al. In order to solve
the system (10), we consider the following algorithm
due to H. Rabitz et al. and presented in [Maday, 2003]
Recursion formulas, k ≥ 1

d

dt
~x(k) = (S̄z + u(k)(t)S̄y)~x(k)

~x(k)(0) =


1
0
0
0

 (12)

u(k)(t) = −λ(k−1)(t)S̄y~x(k)(t) (13)



d
dt
~λ(k) = v(k)(t)S̄y~λ

(k)

~λ(k)( π√
2
) =


0
0
0

xk4( π√
2
)

 (14)

v(k)(t) = −λ(k)(t)S̄y~x(k)(t) (15)

So, the procedure for finding find the optimal control
u(t) and minimizing the cost J(u) is the following:

1. Choose the initial λ(0)(t).
2. Replace λ(0)(t) in the equation (13).
3. Replace u(1)(t) in the equation (12).
4. Integrate forward (12) to obtain x(1)(t) from the

initial state x(1)(0).
5. Obtain u(1)(t) from (13).
6. Replace x(1)(t) in the equation (15) to obtain v(1)

in terms of λ(1)(t).
7. Replace λ(1)(t) in the equation (14).
8. Integrate backwards (14) from the final state x(T )

to get λ(1)(t) .
9. Obtain v(1)(t), replacing λ(1)(t) on (15).

10. {v(k+1)(t), λ(k+1)(t)} → {v(k)(t), λ(k)(t)}
11. x(k+1)(t)→ x(k)(t)
12. u(k+1)(t)→ u(k)(t)
13. Continue until convergence

We start with the selection

λ(0)(t) =


t
0
0
0

 (16)

The process converged for the previous selection and
the cost was J = 0.59545 for k = 100.
In a second selection

λ(0)(t) =


10
10
10
10

 (17)

the process converged. We obtained the optimal control
and the cost was J = 0.56956 for k = 100.
In a third selection

λ(0)(t) =


t
t2

10
10

 (18)

the process converged. We obtained the optimal control
and the cost was J = 0.569545 for k = 100.

In a fourth selection

λ(0)(t) =


t

20
20
20

 (19)

the process converged. We obtained the optimal
control in figure (1) and the cost was J = 0.59545 for
k = 100.

2.1.2 Algorithm II: Krotov et al. In order to
solve the system (10), we consider the following algo-
rithm due to V. F. Krotov et al. and presented in [Ma-
day, 2003]
Recursion formulas, k ≥ 1

d

dt
~x(k) = (S̄z + u(k)(t)S̄y)~x(k)

~x(k)(0) =


1
0
0
0

 (20)

u(k)(t) = −λ(k−1)(t)S̄y~x(k)(t) (21)

d
dt
~λ(k) = u(k)(t)S̄y~λ

(k)

~λ(k)( π√
2
) =


0
0
0

xk4( π√
2
)

 (22)

the procedure for finding the optimal control u(t) and
minimizing the cost J(u) is the following:

1. Choose the initial λ(0)(t).
2. Replace λ(0)(t) in the equation (21).
3. Replace u(1)(t) in the equation (20).
4. Integrate forward (20) to obtain x(1)(t) from the

initial state x(1)(0).
5. Obtain u(1)(t) .
6. Replace x(1)(t) and u(1)(t) in the equation (22).
7. Integrate backwards (22) from the final state x(T )

to get λ(1)(t) .
8. λ(k+1)(t)→ λ(k)(t)
9. x(k+1)(t)→ x(k)(t)

10. u(k+1)(t)→ u(k)(t)
11. Continue until convergence

We started with the selection

λ(0)(t) =


t
0
0
0

 (23)



Figure 1. Optimal control u(t) for one external electromagnetic
field. Rabitz’s algorithm. Numerical solution (blue continuous line)
for k=100. Analytical solution (red dotted line).

The process converged for that selection and the cost
was J = 1.2999 for k = 100.
In a second selection

λ(0)(t) =


10
10
10
10

 (24)

the process converged. We obtained the optimal control
and the cost was J = 1.2992 for k = 100.
In a third selection

λ(0)(t) =


t
t2

10
10

 (25)

the process converged. We obtained the optimal control
and the cost was again J = 1.2992 for k = 100.
In a fourth choose

λ(0)(t) =


t

20
20
20

 (26)

the process converged. We obtained the optimal control
in figure (2) and the cost was again J = 1.2992 for
k = 100. We mention the following theorem:

Theorem [Maday-Turinici]
The algorithms I and II converge monotonically:

J(u(k+1)) ≤ J(u(k)) ∀k ≥ 1, k ∈ N (27)

where

J(u(k)) = 〈(~x(k))t( π√
2

)|O |~x(k)( π√
2

)〉+
∫ π√

2

0

(u(k))2(t) dt

(28)

Figure 2. Optimal control u(t) for one external electromagnetic
field. Krotov’s algorithm. Numerical solution (blue continuous line)
for k=100. Analytical solution (red dotted line).

For a demonstration, see [Maday, 2003]

Remark.
The rigorous proof of the convergence
{u(k)(t), ~x(k)(t)} → {u(t), ~x(t)} is still an open
problem [Maday, 2003].

3 Case of two-controls

In this section we consider the case where two varying
external electromagnetic fields, ux(t), uy(t), act along
the X and Y -axes. Again, let us consider the system

d

dt
~x = (S̄z + ux(t)S̄x + uy(t)S̄y)~x

~x(0) =


1
0
0
0

 , ~x( π√
2
) =


0
0
0
1

 (29)

minimizing the cost functional:

J(ux, uy) = 〈(ψ)t(
π√
2

)|O |ψ(
π√
2

)〉+
∫ π√

2

0

(u2x+u2y) dt

(30)

3.1 Algorithm III

We devised and tested an algorithm based on those
Rabitz and Krotov which unifies and generalizes them
for the case of two controls. Given δ1, δ2, η1, η2,∈



Figure 3. Evolution of the cost functional for Rabitz’s algorithm
(dotted line with circles). The fidelity component of the cost func-
tional (dotted line with triangles). The pulse energy component of
the cost functional (dotted line with squares).

Figure 4. Evolution of the cost functional for Krotov’s algorithm
(dotted line with circles). The fidelity component of the cost func-
tional (dotted line with triangles). The pulse energy component of
the cost functional (dotted line with squares).

[0, 2], λ0(t), v0(t), w0(t) and k ≥ 1 let be

d
dt~x

(k) =


0 −u(k)y (t) −1 −u(k)x (t)

u
(k)
y (t) 0 −u(k)x (t) 1

1 u
(k)
x (t) 0 −u(k)y (t)

u
(k)
x (t) −1 u

(k)
y (t) 0

 ~x(k)

~x(k)(0) =


1
0
0
0




(31)

u(k)y = (1−δ1)v(k−1)(t)+δ1λ
t(k−1)


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 ~x(k)

(32)

u(k)x = (1−δ2)w(k−1)(t)+δ2λ
t(k−1)


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

 ~x(k)

(33)

d
dtλ

(k) =


0 −v(k)(t) −1 −w(k)(t)

v(k)(t) 0 −w(k)(t) 1
1 w(k)(t) 0 −v(k)(t)

w(k)(t) −1 v(k)(t) 0

λ(k)

λ(k)( π√
2

) =


0
0
0

x
(k)
4 ( π√

2
)




(34)

v(k)(t) = (1− η1)u(k)y + η1 λ
t(k)


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 ~x(k)

(35)

w(k)(t) = (1−η2)u(k)x +η2 λ
t(k)


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

 ~x(k)

(36)
the recursion equations. The following algorithm a-
llows to find the optimal controls ux(t), uy(t) of the
problem (9), minimizing the cost J(ux, uy):

1. Select the initial λ0(t), v0(t), w0(t).
2. Select the values δ1, δ2, η1, η2,∈ [0, 2].

3. Replace δ1, λ0(t), v0(t) in (32) to get u(1)y (t).
4. Replace δ2, λ0(t), w0(t) in (33) to get u(1)x (t).
5. In (35) replace u(1)y (t) and η1.
6. In (36) replace u(1)x (t) and η2.
7. Integrate (31) forward to get x(1)(t), using u(1)y (t)

and u(1)x (t).
8. Integrate (34) backwards to get λ(1)(t), using
u
(1)
y (t) and u(1)x (t).

9. Replace x(1)(t) in the equation for u(1)(t).
10. {v(k+1), w(k+1), λ(k+1)} → {v(k), w(k), λ(k)}
11. {u(k+1)

y (t), u
(k+1)
x (t)} → {u(k)y (t), u

(k)
x (t)}

12. Continue until convergence



We start with the selection δ1 = 1
2 , δ2 = 1

2 , η1 =
3
2 , η2 = 3

2 , v
(0) = cos t, w(0) = 1. The process was

convergent at k = 15 for the previous selection and the
cost was J = 1.112498 for k = 100.
In a second selection δ1 = 1

2 , δ2 = 3
2 , η1 = 3

2 , η2 =
1
2 , v

(0) = cos t, w(0) = cos t, the process was con-
vergent at k = 15. We obtained the optimal control
in figure (5) and the cost was again J = 1.112498 for
k = 100.

4 Discussion
In the case of one external electromagnetic field, the

analytic solution [D’Alessandro, 2001] is

u(t) = 1.21cn(2.49 t− 1.0, 0.487) (37)

which was found defining two auxiliary controls, us-
ing the Pontryagin’s Maximum Principle [Pontryagin,
1962] and carrying up the system (10) to one of the
Duffing types. Solving that system we express the so-
lution in terms of Jacobi elliptic functions and eventua-
lly it has the form (37). We can observe in figure (1)
that the Rabitz’s algorithm I has a better performance
for finding the optimal control in this case, in contrast
with Krotov’s algorithm II that has a poor performance,
figure (2). In figures (3), (4) we show the evolution of
the cost functional and their split in fidelity and pulse
energy, for one external electromagnetic field with Ra-
bitz’s algorithm I and Krotov’s algorithm II, respec-
tively. In the case of Krotov’s algorithm II we note,
figure (4), that the cost functional converges to the ex-
pected value (J=1.312828). It’s not the case for the Ra-
bitz’s algorithm I, figure (3).
For two external electromagnetic fields, the analytic

solution [D’Alessandro, 2001],

ux(t) = −1

2
cos(

2π

3
t− (
√

2− 1)
π√
2

)

uy(t) = −1

2
sin(

2π

3
t− (
√

2− 1)
π√
2

)
(38)

was found using again the equations of PMP. We can
observe in figure (5) that the algorithm III has a good
performance for finding the optimal controls in this
case. In figure (6) we show the evolution of the cost
functional and their split in fidelity and pulse energy,
for two external electromagnetic fields case with our
unified algorithm. We note that the cost functional does
not converge to the expected value (J=1.543119).

5 Conclusions
In this paper we have addressed the problem of the op-

timal time to perform a unitary spin transition from the
state spin 1

2 to the state spin− 1
2 in a two-level quantum

system, in the cases of we have one or two controls.

Figure 5. Optimal controlsux(t),uy(t), for two external electro-
magnetic fields. Unified algorithm. Numerical solutions (blue con-
tinuous lines) for k=100. Analytical solutions (red dotted lines).

Figure 6. Evolution of the cost functional for two external electro-
magnetic fields case (dotted line with circles), unified algorithm. The
fidelity component of the cost functional (dotted line with triangles).
The pulse energy component of the cost functional (dotted line with
squares).

In the first instance, one control case, we have imple-
mented two monotonic convergent algorithms, devised
by H. Rabitz et al. and V. F. Krotov et al. , respectively,
for their application in the problem mentioned. The co-
rresponding optimal control and the minimal cost were
calculated. The results were compared with the analyt-
ical solution in each case. This is an elliptic function
of Jacobi which is obtained by introducing two auxil-
iary controls and carrying up the system to one of the
Duffing oscillator types and whose parameters depend
on the initial conditions of the original problem. The
limit of the recursive process is a function that takes
the form of the elliptic function of Jacobi cosine type.
The minimum value of the cost is close to that obtained
in reports like [D’Alessandro, 2001]. Secondly, in the
case of two controls, we have devised an algorithm that
is a combination of the algorithms of H. Rabitz and V.
F. Krotov and implement it to the mentioned problem
of two controls. Again, the algorithm converges rapidly
to known analytical solutions, which are sine and co-



sine functions. The minimum cost was calculated. This
strategy yields a good performances in the case-study
we have analyzed: we have compared with the analytic
solution. Of course, a structured validation of the new
algorithm is required. Finally, we consider very impor-
tant the implementation and development of iterative
numerical algorithms to solve quantum control prob-
lems in the case of a quantum multilevel.
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