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Abstract
We present an algorithm to generate a smooth curve

interpolating a set of data on an n-dimensional ellip-
soid. This is inspired by an algorithm based on a rolling
and wrapping technique, described in (Hüper and Silva
Leite, 2007) for data on a general manifold embedded
in Euclidean space. Since the ellipsoid can be embed-
ded in an Euclidean space, this algorithm can be im-
plemented, at least theoretically. However, one of the
basic steps of that algorithm consists in rolling the el-
lipsoid, over its affine tangent space at a point, along
a geodesic curve. This allows to project data from the
ellipsoid to a space where interpolation problems can
be easily solved. The major obstacle to implement the
rolling part of that algorithm is due to the fact that ex-
plicit forms for Euclidean geodesics on the ellipsoid
are not known. To overcome this problem and achieve
our goal, we embed the ellipsoid and its affine tangent
space on Rn+1 equipped with an appropriate Rieman-
nian metric, so that geodesics are given in explicit form
and the kinematics of the rolling motion are easy to
solve. By doing so, we can rewrite the algorithm to
generate a smooth interpolating curve on the ellipsoid
which is given in closed form.

Key words
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1 Introduction
There are several classical methods to generate

smooth interpolating curves in Euclidean spaces. Cu-
bic splines are possibly the most interesting from the
point of view of applications, since they also mini-
mize changes in velocity. However, if one requires
the curve and data points to live on a curved space,

the classical methods do not produce a reasonable an-
swer. Interpolation problems on manifolds have been
studied by several authors, starting with the pioneer
work of Noakes, Heinzinger and Paden in (Noakes
et al., 1989). Following this, other authors devel-
oped the theory of geometric splines on manifolds, us-
ing a variational approach (see, for instance, (Crouch
and Leite, 1991), (Camarinha, 1996), and (Crouch and
Leite, 1995)), more recently a geometric approach was
initiated in (Giambó et al., 2002), but in both cases
the results, although theoretically very interesting, are
very difficult to implement except in trivial cases. A
geometric algorithm, which generalizes the classical
De Casteljau algorithm, was also developed in (Park
and Ravani, 1995) and (Crouch et al., 1999). How-
ever, the algorithm on non Euclidean spaces produces
interpolating curves defined implicitly, which makes its
implementation very hard. The main drawback in all
these approaches is that they do not produce interpolat-
ing curves in closed form.
In the present paper we present an algorithm that gen-

erates interpolating curves on ellipsoids given in ex-
plicit form. This algorithm is based on a procedure
to generate interpolating curves on manifolds embed-
ded in Euclidean space, first described in (Jupp and
Kent, 1987) for the 2-sphere, generalised in (Hüper and
Silva Leite, 2002) for the n-sphere and in (Hüper et
al., 2007) for the rotation group and Grassmann man-
ifolds. The algorithm is based on a rolling/unrolling
and wrapping/unwrapping technique that will be fully
described in the last two sections. To achieve our goal,
we organize the previous Sections as follows. We for-
mulate the interpolating problem in Section 2, describe
general rolling maps in Section 3, present the appropri-
ate geometry of the ellipsoid in Section 4, and, finally,
in Section 5, we derive the kinematic equations for the
rolling motion of an ellipsoid on its affine tangent space



at a point.

2 Smooth interpolation on the ellipsoid En
Let d1, d2, . . . , dn+1 be positive real numbers. The
n-dimensional ellipsoid is defined as

En :=

{
(x1, x2, . . . , xn+1) ∈ Rn+1

:
x2

1

d2
1

+
x2

2

d2
2

+ · · ·+
x2
n+1

d2
n+1

= 1

}
.

2.1 Statement of the problem
Given a set of k + 1 distinct points pi ∈ En, i =

0, 1, . . . , k, vectors V0 and Vk tangent to En at p0 and
pk respectively, and fixed times ti, where

0 = t0 < t1 < · · · < tk−1 < tk = τ,

we aim to solve the following problem:

Problem 1. Find a C2-smooth curve

γ : [0, τ ]→ En (1)

satisfying interpolation conditions:

γ(ti) = pi, 1 ≤ i ≤ k − 1, (2)

and boundary conditions:

γ(0) = p0, γ(τ) = pk,
γ̇(0) = V0, γ̇(τ) = Vk.

(3)

In the last section of this paper we present an al-
gorithm that solves this problem and is an adapta-
tion of the algorithm presented in (Hüper and Silva
Leite, 2007) for generating interpolating curves on
manifolds embedded in Euclidean space. One im-
portant step in this algorithm is based on a rolling
technique that consists on rolling the given manifold
over its affine tangent space at a point, along geodesic
curves. The main drawback when trying to use the al-
gorithm in (Hüper and Silva Leite, 2007) is that if the
ellipsoid is embedded in Euclidean space, the corre-
sponding geodesics are very hard to compute. In order
to overcome this problem, we embed the ellipsoid in
another Riemannian manifold where geodesics can be
expressed in closed form. Moreover, rolling motions
along these geodesics can be described easily, follow-
ing the ideas in (Hüper et al., 2011) to describe rolling
motions of manifolds embedded in arbitrary Rieman-
nian manifolds. So, in order that we can follow the
implementation of the algorithm, we dedicate the next
section to rolling maps. After presenting the general
definition, we derive the kinematic equations for rolling
the ellipsoid En over its affine tangent space at a point.

3 Rolling maps
We use an extended Sharpe’s definition (Sharpe,

1997) of a rolling map which is applicable to Rie-
mannian manifolds and can be found in (Hüper et
al., 2011). Hereafter I ⊂ R denotes a closed interval.

Definition 2. Let M0 and M1 be two n-manifolds iso-
metrically embedded in anm-dimensional Riemannian
manifold M and σ1 : I → M1 a smooth curve in M1.
A rolling map of M1 on M0 along the curve σ1, with-
out slipping or twisting, is a map χ : I → Isom(M)
satisfying the following conditions, for all t ∈ I:

Rolling

(a) χ(t)(σ1(t)) ∈ M0;
(b) Tχ(t)(σ1(t))(χ(t)(M1)) = Tχ(t)(σ1(t))M0.

The curve σ0 : I → M0 defined by σ0(t) :=
χ(t)(σ1(t)) is called the development curve of σ1.

No-slip σ̇0(t) = χ∗(t)(σ̇1(t)), where χ∗ is the push-
forward of χ.

No-twist

tangential:
(
χ̇(t)◦χ(t)−1

)
∗(Tσ0(t)M0) ⊂ Tσ0(t)M

⊥
0 ,

normal:
(
χ̇(t) ◦ χ(t)−1

)
∗(Tσ0(t)M

⊥
0 ) ⊂ Tσ0(t)M0,

where TpM
⊥
0 denotes the normal space at p ∈ M0.

This definition can be extended to the situation when
σ1 is only piecewise smooth. In this case χ is also
piecewise smooth and the constraints of no-slip and no-
twist are valid for almost all t.

4 The geometry of the ellipsoid
The Euclidean metric in Rn+1 is de-

noted by
〈
·, ·
〉

. The positive definite ma-
trix D = diag(d1, d2, . . . , dn+1) � 0 in-
duces another metric on Rn+1 defined by(
U, V

)
7→
〈
U, V

〉
D−2 :=

〈
U,D−2V

〉
. This metric

space will be denoted by M =
(
Rn+1,

〈
·, ·
〉
D−2

)
.

Since

〈
DU,DV

〉
D−2 =

〈
DU,D−2DV

〉
=
〈
U, V

〉
,

then the mapping

ϕ : (Rn+1,
〈
·, ·
〉
)→ M, (4)

given in the standard coordinates by x 7→ Dx, is an
isometry. M is an example of a space equipped with
a left-invariant metric. Unlike the Euclidean space,
groups of isometries acting on objects from the left
hand side is different than from the right. The main
reason for introducing M is that the ellipsoid En be-
haves like the sphere in Euclidean space with its stan-
dard metric.



4.1 The Riemannian connection
Let ∇ be the standard Riemannian connection on
Rn+1. Then ϕ∗∇ is the Riemannian connection on
M, cf. (Lee, 1997, Proposition 5.6). More precisely,
∀X,Y ∈ TM, ϕ∗

(
∇XY

)
= ∇ϕ∗X (ϕ∗Y ), hence

∇XY = D∇D−1X

(
D−1Y

)
= ∇D−1XY (5)

is the Riemannian connection on M. We leave it to
the reader to check that ∇ defined by (5) is indeed the
Riemannian connection (or Levi-Civitta connection) on
M, and it is compatible with respect to

〈
·, ·
〉
D−2 and is

torsion free.
Let γ : I → M be curve in M and let V : I → TM

be a vector field along γ, i.e., V (t) ∈ Tγ(t)M, for all
t ∈ I . Let γ̄ and V be their isometric images in Rn+1.
By (5) and because D is constant, there is

∇γ̇V = D∇ ˙̄γV = DV̇ = V̇ .

Hence the covariant derivative of the vector field V
does not depend on γ!

4.2 The group of isometries of M
Let Isom(M) denote the (Lie) group of isometries of

M. Suppose that ϕ : M→ M is an isometry. Therefore,
for any p ∈ M and U, V ∈ TpM the following equality
holds. 〈

U, V
〉
D−2 =

〈
ϕ∗U,ϕ∗V

〉
D−2

or, equivalently,〈
U,D−2V

〉
=
〈
ϕ∗U,D

−2ϕ∗V
〉

=
〈
U,ϕT

∗D
−2ϕ∗V

〉
.

It follows now that D−2 = ϕT
∗D
−2ϕ∗. Then, ϕ∗ ∈

GD−2 , where GD−2 is the matrix quadratic Lie group
defined as

GD−2 :=
{
g : gTD−2g = D−2

}
.

The Lie algebra of GD−2 is defined as:

LD−2 :=
{
A : ATD−2 = −D−2A

}
.

It can be easily seen that, for any g ∈ GD−2 , there exists
exactly one R ∈ SO(n+ 1) such that g = DRD−1.
Therefore GD−2 = DSO(n+ 1)D−1 and the two
groups are isomorphic, i.e., GD−2

∼= SO(n+ 1).
Also, for any Ω ∈ LD−2 , there exists exactly one
A ∈ so(n+ 1) such that Ω = DAD−1. At the
same time, we established that Isom(M) = GD−2 n
Rn+1 ∼= SE(m). In the reminder of this paper ele-
ments of Isom(M) will be denoted as pairs (g, s), with
g ∈ GD−2 and s ∈ Rn+1. The group operations in
GD−2nRn+1 are defined as: (g, s)

−1
=
(
g−1,−g−1s

)
and (g1, s1) · (g2, s2) = (g1g2, g1s2 + s1).

4.3 The ellipsoid as the unit sphere in M

The ellipsoid En is the unit sphere in M, i.e., it is de-
fined by

En :=
{
x ∈ M : |x|D−2 = 1

}
. (6)

For ε > 0, let γ : (−ε, ε) → En be any differentiable
curve with γ(0) = p and γ̇(0) = V . Differentiating the
condition |γ|D−2 = 1 with respect to t yields

0 =
d

dt
|γ|2D−2 = 2

〈
γ̇,D−2γ

〉
= 2
〈
γ̇, γ

〉
D−2 .

At t = 0, the above equality yields
〈
V, p

〉
D−2 =

0. Henceforth the tangent space TpEn is the sub-
space orthogonal to p in M with respect to its met-
ric
〈
·, ·
〉
D−2 . The unit normal vector Λ ∈ (TpEn)

⊥

is given by Λ = p/|p|D−2 = p. Hence, the Wein-
garten map ΞΛ at p ∈ En is minus the identity, i.e.,
ΞΛ = −id. The scalar second fundamental form
h can be easily derived from the Weingarten equa-
tion

〈
ΞΛ(X), Y

〉
D−2 = −

〈
X,Y

〉
D−2 = −h(X,Y ).

Hence the second fundamental form is II(X,Y ) =〈
X,Y

〉
D−2p.

The tangent space may be defined in terms of D as:

TpEn :=
{
DAD−1p : A ∈ so(n+ 1)

}
. (7)

4.4 Geodesics on the ellipsoid
Given a point p0 ∈ En and a vector V0 ∈ Tp0En, there

exists unique geodesic t 7→ γ(t) satisfying γ(0) =
p0, γ̇(0) = V0. This geodesic is defined by

γ(t) = p0 cos(t |V0|) + V0
sin(t |V0|)
|V0|

. (8)

The algorithm to be presented in the last section de-
pends on the implementation of geodesic arcs that join
two points on the ellipsoid. So, at this stage we also
present an explicit formula to compute the geodesic arc
t 7→ γ(t) on

(
En,

〈
·, ·
〉
D−2

)
, joining the points pi (at

t = ti) and pi+1 (at t = ti+1) (with pi 6= ±pi+1):

γ(t) =
1

sin θi

{
sin
( θi
ti+1 − ti

(ti+1 − t)
)
pi

+ sin
( θi
ti+1 − ti

(t− ti)
)
pi+1

}
,

(9)

where θi = arccos
〈
pi, pi+1

〉
D−2 .

This can be easily checked by computing γ̈(t), to
conclude that γ̈(t) = −θ2

i γ(t), so γ̈(t) belongs to(
Tγ(t)En

)⊥
in M.



5 Rolling the ellipsoid
We aim to write kinematic equations for the ellipsoid
En rolling upon its affine tangent plane, when both are
embedded in M =

(
Rn+1,

〈
·, ·
〉
D−2

)
. We derive the

equations in a few steps, starting with the distribution
of the rolling map.

5.1 The configuration space and the distribution
For M1 = En choose an initial point of contact p0

that, without loss of generality, to be the “south pole” of
the ellipsoid. Then p0 := −Den+1 = −dn+1en+1 ∈
SnD. The affine tangent space at p0 is defined by

M0 = Taff
p0 E

n :=
{
x ∈ M : x = p0 + (p0)

⊥ }
,

where (p0)
⊥ denotes the set of vectors in M that are

normal to p0 with respect to the metric D−2. The con-
figuration spaceQ ⊂ Taff

p0 E
n×GD−2×En of the rolling

map χ is the space of all possible positions of the unit
sphere En tangent to its affine tangent plane. Namely

Q =
{ (
p, g, q

)
∈ M0 × GD−2 × En

: g(TqEn) = TpM0

}
.

The distribution of the rolling map is defined by the
following set of three differential equations:

(1) ṗ = gq̇,
(2) ġg−1V = −gII1(g−1ṗ, g−1V ), for all V ∈ TpM0,

and
(3) ġg−1Λ = −gΞ1(g−1ṗ, g−1Λ), for all Λ ∈

(TpM0)
⊥.

These equations, correspond to the no-slip and no-twist
constraints in Definition 2. Let σ1(t) = g−1(t)(p0),
where g : I → GD−2 satisfies g(0) = id. Since the
metric

〈
·, ·
〉
D−2 is left-invariant with respect to GD−2

and GD−2 acts transitively on En any curve can be pa-
rameterised in this way. For any fixed t ∈ I assign
σ0(t) = p and σ1(t) = q. Then the first condition
above reads σ̇0 = gσ̇1. This is the no-slip condition.
Equation (3) is redundant because the ellipsoid has co-
dimension one, and equation (2) becomes

ġg−1V =− g
〈
g−1σ̇0, g

−1V
〉
D−2σ1

=−
〈
σ̇0, V

〉
D−2p0,

∀V ∈ TpM0. Let A = ṘR−1. Then ġg−1 =
DAD−1 and the above equality becomes

AD−1V = −
〈
σ̇0, V

〉
D−2D

−1p0

=
〈
D−1σ̇0,D

−1V
〉
en+1.

(10)

In the standard coordinates, the entries of the matrixA
can be found using Aji =

〈
ej ,Aei

〉
. By (10), for any

1 ≤ i ≤ n

Aei = AD−1Dei =
〈
D−1σ̇0, ei

〉
en+1.

Hence, Aji = d−1
i σ̇i0, for 1 ≤ i < j = n + 1, and

Aji = 0, otherwise. SinceA is skew-symmetric then

A =


0 . . . 0 −u1

0 . . . 0 −u2

...
. . .

...
...

0 . . . 0 −un
u1 . . . un 0

 = −u eT
n+1 + en+1 u

T,

where u = (u1, . . . , un, 0)T = −D−1σ̇0. In general

A(t) = u(t) pT
0 D−1 −D−1 p0 u

T(t). (11)

Proposition 3. Let R : I → SO(n + 1) and s : I →
Rn+1 be solutions to the following set of equations

{
ṡ(t) = −DA(t)D−1p0

Ṙ(t) = A(t)R(t)
, (12)

with R(0) = I and s(0) = 0. Then, χ : I →
GD−2 nRn+1 given by

χ(t) = (g(t), s(t)) =
(
DR(t)D−1, s(t)

)
(13)

is a rolling map of the ellipsoid rolling on its affine
tangent space in M, with rolling curve σ1(t) =
DR−1D−1p0 and its development σ0(t) = s(t) + p0.

Proof. This is just a matter of checking that all the con-
ditions of Definition 2 hold.

Rolling It is easy to verify that since ṡ(t) is normal
to p0 in M then equality (a) holds:

χ(t)(σ1(t)) =
(
DR(t)D−1

)(
DR(t)TD−1

)
p0 + s(t)

= p0 + s(t) ∈ M0.

To verify (b) it is enough to see that since the metric
on M is left invariant with respect to GD−2 , this group
sends the unit sphere to itself. Also, since the normal
spaces of En and Taff

p0 E
n coincide at the point of con-

tact, so do the tangent spaces.

No-slip From the above calculations of the develop-
ment curve it follows that

σ̇0 = ṡ = −gg−1 ġg−1p0 = −ġg−1p0 = −DAD−1p0.



No-twist It is enough to verify the tangential part be-
cause the normal one follows immediately from (12).
For any vector V ∈ Tσ0(t)M0.

(
ġg−1

)
(V ) = DAD−1V

= D
(
upT

0 D
−1 −D−1p0u

T
)
D−1V

= DupT
0 D
−2V −DD−1p0u

TD−1V
= Du

〈
p0, V

〉
D−2 − p0

〈
u,D−1V

〉
= −

〈
u,D−1V

〉
p0 ∈ T⊥p0E

n.

The proof is now complete. �

(One can find an alternative proof of Proposition 3
in (Hüper et al., 2011).) In general, the kinematic
equations (12) may be hard to solve. However, when
A(t) = A is constant, explicit solutions can be found.
This corresponds to rolling motions along geodesics.

Corollary 4. For the special situation whenA(t) = A
is constant, the solution of the kinematic equations is
given by

R(t) = exp (tA) and s(t) = −tDAD−1p0,

the rolling curve and its development, given respec-
tively by

σ1(t) = g−1(t)p0 = D exp (−tA)D−1p0,

σ0(t) = p0 + s(t) = p0 − tDAD−1p0,
(14)

are geodesics on the ellipsoid
(
En,

〈
·, ·
〉
D−2

)
and on

its affine tangent space
(
Taff
p0 E

n,
〈
·, ·
〉
D−2

)
.

Proof. The only statement that requires a computation
is that σ1 is a geodesic on the ellipsoid for the metric
induced by D−2. This is easily checked by computing
its second derivative and comparing with (7) as follows:

σ̇1(t) = −DA exp (−tA)D−1p0 = −DAD−1σ1(t),

σ̈1(t) = DA2D−1σ1(t) = − |u|2 σ1(t) ∈ (Tσ1(t)En)⊥.

The last equality can be verified by not-
ing that

〈
u,D−1p0

〉
= 0 and, because

A2 exp (−tA)D−1p0 = exp (−tA)A2D−1p0,
then it follows from (11) that

A2D−1p0 = A
(
AD−1p0

)
= Au = − |u|2 D−1p0.

What was to show. �

Remark 5. Expanding the power series

exp (−tA)D−1p0 =

∞∑
i=0

(−t)i

i!
AiD−1p0

=

∞∑
k=0

(−1)
k t2k

(2k)!
|u|2k D−1p0

−
∞∑
k=0

(−1)
k t2k+1

(2k + 1)!
|u|2k u

yields the expression for the geometric exponential
map. So,

σ1(t) = p0 cos(t |u|)−Du
sin(t |u|)
|u|

, (15)

and −Du ∈ Tp0En is the initial velocity vector of
the geodesic σ1. This agrees with the formula (8) and
gives a geometric interpretation of the control vector u
in (11).

From the point of view of Control Theory, the ellipsoid
rolling on its affine tangent space is controllable. This
is a direct consequence of the positivity of the Gaussian
curvature of the ellipsoid. In turn, one can steer the el-
lipsoid from an admissible configuration (any config-
uration in which the ellipsoid is tangent to the affine
tangent space at a point) to any other admissible con-
figuration, only by rolling without twist and without
slip. Interested reader is referred to (Krakowski and
Silva Leite, 2012) for more details.

6 Algorithm to generate an interpolating curve on
the ellipsoid En

This algorithm is based on a procedure to generate
interpolating curves on some manifolds embedded
in Euclidean space, first described in (Jupp and
Kent, 1987) for the 2-sphere, generalised in (Hüper
and Silva Leite, 2002) for the n-sphere and in (Hüper
et al., 2007) for the rotation group and Grassmann
manifolds. Here we show how this algorithm can
be extended to the ellipsoid En to generate an inter-
polating curve, given in closed form, that solves the
Problem 1 stated in Subsection 2.1. We also implement
the algorithm for the 2-dimensional ellipsoid.

The basic idea behind the algorithm is to project the
data from En to Taff

p0 E
n, solve an interpolation problem

in this affine space and, finally, projecting back to En
the interpolating curve on the affine space. The pro-
jection uses a mixed technique of rolling/unrolling and
unwrapping/wrapping, performed by an appropriate
rolling map and a convenient diffeomorphism. These
two maps must satisfy some conditions, as follows.

1. The rolling map (to perform the rolling/unrolling):



Choose a rolling map χ = (DRD−1, s) : [0, τ ]→
GD−2 n Rn+1 of En on Taff

p0 E
n, along a smooth

curve α1 that joins p0 (at t = 0) to pk (at t = τ ),
with development α0.

2. The local diffeomorphism (to perform the unwrap-
ping/wrapping):
Choose a suitable local diffeomorphism, on an
open neighbourhood U of p0,

Φ: U ⊂ En → Taff
p0 E

n, (16)

so that

Φ(p0) = p0 and ∂Φ−1(p0) = In+1, (17)

where ∂Φ denotes the Jacobian matrix of Φ.

6.1 The Algorithm
The algorithm consists essentially of five steps.

Step 1. Compute the rolling curve

α1 : [0, τ ]→ En, (18)

connecting p0 with pk, i.e., such that

α1(0) = p0 and α1(τ) = pk. (19)

Step 2. Unwrap the boundary data by rolling En along
α1, so that:

p0 7→ χ(0)p0 := q0 = p0 ∈ Taff
p0 E

n,
pk 7→ χ(τ)pk := qk ∈ Taff

p0 E
n,

(20)

as well as

V0 7→ χ∗(0)V0 := W0 = V0 ∈ Tq0(Taff
p0 E

n),
Vk 7→ χ∗(τ)Vk := Wk ∈ Tqk(Taff

p0 E
n).

(21)

Step 3. Unwrap the remaining interpolating points
pi, i = 1, . . . , k − 1 at ti, from En to Taff

p0 E
n, using

the diffeomorphism Φ and the time dependent rolling
map χ, so that

pi 7→ Φ
(
χ(ti)pi − α0(ti) + p0

)
+ α0(ti)− p0 =: qi.

(22)

Step 4. Solve the interpolating problem on Taff
p0 E

n for
the projected data {q0, . . . , qk;W0,Wk}, to generate a
C2-smooth curve

β : [0, τ ]→ Taff
p0 E

n (23)

satisfying

β(0) = p0 = q0,
β(ti) = qi,
β(τ) = qk,

β̇(0) = V0 = W0,

β̇(τ) = Wk.

(24)

Step 5. Wrap β([0, τ ]) back onto the ellipsoid using
Φ−1, while unrolling along α1, to produce a curve γ,
defined by the following explicit formula.

γ(t) := χ(t)−1
(

Φ−1
(
β(t)− α0(t) + p0

)
+ α0(t)− p0

) (25)

Theorem 6. The curve γ : [0, τ ] 7→ En defined by (25)
solves Problem 1.

Proof. Recall that s(t) = α0(t) −
p0, χ =

(
DRD−1, s

)
and χ−1 =(

DR−1D−1,−DR−1D−1s
)
. A simple calcula-

tion shows that

γ(t) = DR−1(t)D−1
(

Φ−1
(
β(t)− s(t)

))
,

γ̇(t) = DṘ−1(t)D−1
(

Φ−1
(
β(t)− s(t)

))
+

DR−1(t)D−1
(
∂Φ−1

(
β(t)− s(t)

)(
β̇(t)− ṡ(t)

))
.

To compute the boundary conditions, note that R(0) =
I , s(0) = 0 and β(0) = p0. So,

γ(0) = Φ−1
(
β(0)− s(0)

)
= Φ−1(p0) = p0. (26)

Also, β(τ) = α0(τ), which implies

γ(τ) = DR−1(τ)D−1
(

Φ−1(p0)
)

= DR−1(τ)D−1(p0) = α1(τ) = pk.
(27)

Now, it follows from the kinematic equations that
Ṙ−1(0) = −A(0), ṡ(t) = −DA(t)D−1p0,
and Ṙ−1(τ) = −R−1(τ)A(τ). Also, since
β̇(τ) = α̇0(τ) = χ∗(τ)α̇1(τ), we have β̇(τ) =
DR(τ)D−1Vk. As a consequence,

γ̇(0) =−DA(0)D−1
(

Φ−1(p0)
)

+ DR−1(0)D−1
(
∂Φ−1(p0)

)(
β̇(0)− ṡ(0)

)
=ṡ(0) + (β̇(0)− ṡ(0)) = V0,



γ̇(τ) =DṘ−1(τ)D−1
(

Φ−1(β(τ)− s(τ))
)

+ DR−1(τ)D−1
(
∂Φ−1(β(τ)− s(τ))(β̇(τ)− ṡ(τ)

)
=−DR−1(τ)A(τ)D−1p0

+ DR−1(τ)D−1
(
β̇(τ) + DA(τ)D−1p0

)
=DR−1(τ)D−1β̇(τ)

=DR−1(τ)D−1DR(τ)D−1Vk = Vk.

Finally, looking at the expression of γ(ti) and using the
expression

β(ti) = Φ
(
χ(ti)pi − α0(ti) + p0

)
+ α0(ti)− p0,

that comes from (22), since β(ti) = qi, we obtain after
simplifications

γ(ti) = pi.

The resulting curve is C2-smooth by construction,
since Φ and χ are smooth and β is C2-smooth. This
concludes the proof. �

Remark 7. At this point it is important to point out
that step 4. can be easily implemented, although
performed on a non-Euclidean submanifold. This
is due to the fact that geodesics, and other polyno-
mial curves are the same on

(
Taff
p0 E

n,
〈
·, ·
〉
D−2

)
and

(Taff
p0 E

n,
〈
·, ·
〉
). Indeed, the Euler Lagrange equation

is the same for the two problems

min
x

∫ τ

0

〈
x(k)(t), x(k)(t)

〉
dt

and

min
x

∫ τ

0

〈
x(k)(t), x(k)(t)

〉
D−2 dt

and is given by x(2k) = 0. In particular, for k = 2, cu-
bic polynomials (cubic splines) in Taff

p0 E
n may be gen-

erated by the classical De Casteljau algorithm.

7 Implementation of the algorithm on E2

In order to implement the algorithm on E2, we have to
choose the rolling map so that the corresponding kine-
matic equations can be solved explicitly. For that rea-
son, we choose χ : [0, τ ]→ GD−2 nRn+1 to be the the
rolling map of E2 on Taff

p0 E
2, along the geodesic α1 that

joins p0 (at t = 0) to pk (at t = τ ), with development
α0. Our choice for the local diffeomorphism Φ is the
stereographic projection from the “north pole”. Before
we proceed with the implementation of the algorithm,
we give details about this projection.

Figure 1. Smooth interpolation on the ellipsoid.

7.1 Stereographic projection of E2

The stereographic projection from the “north pole” of
the ellipsoid to the tangent plane at the “south pole”
p0 = [0, 0,−d3]> ∈ E2 is given by:

Φ: E2 \ {[0, 0, d3]>} → Taff
p0 E

2

x1

x2

x3

 7→



2d3x1
d3 − x3

2d3x2
d3 − x3

−d3

 ,
(28)

with inverse

Φ−1 : Taff
p0 E

2 → E2 \ {[0, 0, d3]>}

 ξ1
ξ2
−d3

 7→



4d2
1d

2
2ξ1

d2
2ξ

2
1 + d2

1ξ
2
2 + 4d2

1d
2
2

4d2
1d

2
2ξ2

d2
2ξ

2
1 + d2

1ξ
2
2 + 4d2

1d
2
2

(d2
2ξ

2
1 + d2

1ξ
2
2 − 4d2

1d
2
2)d3

d2
2ξ

2
1 + d2

1ξ
2
2 + 4d2

1d
2
2


.

Remark 8. It can easily be shown that Φ satisfies the
following:

Φ(p0) = p0, ∂Φ−1(p0) = I3, (29)

where ∂Φ−1 denotes the Jacobian matrix of the differ-
entiable map Φ−1.



Figure 2. Comparison of interpolation on the ellipsoid through two
geodesic segments between conjugate (antipodal) points.

We now have all the necessary ingredients to generate
interpolating curves on E2. Figure 1 shows the main
steps of the algorithm and the resulting interpolating
curve.
Although Theorem 6 guarantees that a solution to the

interpolation problem exists, it says nothing about its
uniqueness. It is clear from (25) that the interpolating
curve γ depends on the choice of a rolling curve α1 and
a diffeomorphism Φ. But even when the later is fixed
and the rolling curve is chosen to be a geodesic arc join-
ing the initial and the final points, there might be many
solution curves for the interpolating problem. This
occurs, and was already expected, when those points
are antipodal since there are infinitely many geodesics
joining them. Figures 2 and 3 illustrate what happens
when two different geodesic segments joining antipo-
dal points are used as rolling curves. It is worth noting
different directions of the transformed ending vectors
Wk in each case. This is a result of the curvature of the
ellipsoid.
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Hüper, K., M. Kleinsteuber and F.S. Leite (2007).
On the geometry of rolling maps and applications to
robotics. ROBOMAT 07 p. 117.
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