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Abstract
The problems of the proposed paper are generated by

the actual tasks of communication networks. The de-
velopment of communication resources is accompanied
by an increase in the dimension of existing communi-
cation networks, for which the usual tools for solving
network problems are becoming increasingly ineffective.
At the same time, the spectrum of communication net-
work problems covers both classical graph theory prob-
lems and specialized problems linking them with mathe-
matical models of various fields of mathematics, includ-
ing optimization theory, dynamic programming, proba-
bility theory and the theory of heuristic algorithms.

This paper is devoted to the study of the problem of
optimal allocation of a certain resource on the objects of
the communication network. In this case, a complete set
of specialized equipment at the nodes of the communi-
cation network is considered as a resource. It is neces-
sary to optimize the number of pieces of equipment with
the condition that all fiber-optic communication lines of
the network are under the control of installed reflectome-
ters. To solve this problem, variants of two methods
were described: the greedy algorithm and the method of
branches and boundaries. On the basis of the described
algorithms, the computer programs were implemented
and computational experiments were carried out; in the
latter, the dimension of the communication network was
chosen high enough to guarantee the legality of using
the selected variants of algorithms for real communica-
tion networks. A representative series of experiments
has shown that it is more expedient to use variants of
the greedy heuristic algorithm for the group of problems
under consideration, this paper contains a detailed argu-
mentation of the result obtained.

The considered problem can also be transferred to
cases of optimal placement of other resources on the ob-
jects of the communication network. At the same time,
if there is a specific objective function, there will be an-
other formalization of restrictions. But the approaches
to choosing the optimum may be identical, which makes
the results obtained in the paper more important due
to their participation in potential generalizations of the
problem.

Key words
Communication network, heuristic algorithms, opti-

mal subset selection, graph theory models, greedy algo-
rithm, ranches-and-boundaries method.

1 Introduction
At the beginning of the paper, we repeat some sen-

tences from the recent paper [Melnikov and Terentyeva,
2022] about the existing connection of the tasks we are
considering with physical data layer transmits bits over
physical communication channels. This connection of
those problems that can be called related to physics with
the problems of the theory of communication networks
is also fully traced in this paper.

Thus, the physical data layer transmits bits over phys-
ical communication channels, such as coaxial cable or
twisted pair. That is, it is this level that directly transmits
data. At this level, the characteristics of electrical sig-
nals that transmit discrete information are determined,
for example, the type of encoding, data transfer rate, etc.
And after that it is necessary to consider the control of
the communication network, i.e., its various algorithms.

When designing a communication network, the calcu-
lation of its stability is mandatory requirement. In the
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case of large-scale communication networks, this be-
comes a problematic issue, which is caused by the NP
complexity of algorithms for obtaining the correct sta-
bility estimate.

In this way, a completely different problem than in
[Melnikov and Terentyeva, 2022] is considered, more-
over, it is little related to it, if viewed from the point of
view of the problems that arise for them in graph theory.
However, these two problems are very closely related in
terms of their practical application, and we have already
briefly said about this.

The problems of the proposed paper are generated by
practical work with communication networks. The mod-
ern pace of development of civilization and communica-
tion resources are inevitably accompanied by an increase
in the dimension of existing communication networks,
for which the usual tools for solving network problems
are becoming increasingly ineffective. All these fac-
tors stimulate the development of new effective methods
for solving problems on communication networks. At
the same time, the spectrum of communication network
tasks covers both graph theory close to classical prob-
lems and specialized problems synthesizing

• technical features of the design and operation of
communication networks

• with mathematical models of various fields of math-
ematics, including:

– optimization theory,
– dynamic programming,
– probability theory,
– and the theory of heuristic algorithms.

This paper is devoted to the study of the problem of
optimal allocation of a certain resource on the objects
of the communication network. In this case, a complete
set of specialized equipment (so called reflectometers) at
the nodes of the communication network is considered
as a resource. It is necessary to optimize the number
of pieces of equipment with the condition that all fiber-
optic communication lines of the network are under the
control of installed reflectometers. The control condition
is formalized. It should be noted that this optimal distri-
bution problem was NP-hard, and, therefore, it requires
the development of special heuristic algorithms, as well
as the study of the effectiveness of these heuristic algo-
rithms. The research was also dictated by the importance
of the task, since for high-dimensional networks, which
are real communication networks, the factor of optimiz-
ing resources, including equipment in the form of reflec-
tometers, becomes one of the most significant.

To solve this problem, two groups of methods were
programmed:

• the simple greedy algorithm, [Hromkovič, 2003];
• and the branches-and-boundaries method, [Hrom-

kovič, 2003; Hromkovič, 2004] etc.

The dimension of the communication network was cho-

sen high enough to guarantee the legitimacy of using the
chosen most effective method for real communication
networks.

A representative series of experiments has shown that
it is advisable to use a greedy heuristic algorithm for the
optimal placement of reflectometers on communication
network objects for the purpose of total control of fiber-
optic communication lines. This paper contains a de-
tailed argumentation of the obtained result.

2 On the relation with the previous works
of the authors on this topic

Thus, for the organization of a specific communication
network:

• we consider a fairly relevant problem of reflectome-
try,

• propose a graph model for it,
• give some possible algorithms for solving the prob-

lem within the framework of the proposed model,
• give brief results of the first computational experi-

ments conducted,
• and draw preliminary conclusions about the possi-

ble application of these algorithms.

More specifically, in the paper we consider the topic of
reflectometry of optical fibers of the communication net-
work, related to the identification of sections of fiber-
optic cable that can be changed as a result of internal or
external destabilizing factors. Within the framework of
this topic, a specific task is considered, i.e., the problem
of optimal placement of reflectometers on network ob-
jects.

The paper continues the subject of works: [Melnikov,
2005; Melnikov, 2009; Melnikov et al., 2021] etc. We
shall use the terminology described in these works with-
out further explanation, as well as the terms introduced
directly into them:

• “anytime algorithm”,
• “subtask array”,
• “right subtask”,
• “left subtask”,
• “sequence of right subtasks”,
• etc.

More precisely, we continue to consider the application
of the branches-and-boundaries method (its extension,
previously titled a multi-heuristic approach) in a lot of
discrete optimization problems. At the same time, we
add several auxiliary heuristic algorithms to the “usual”
variants of the branches-and-boundaries method (BBM),
which are almost equally implemented in various sub-
ject areas. However, unlike all other subject areas, here
in the process of computational experiments we have not
received any acceptable gain from the use of BBM; as a
result, we make a preliminary conclusion that the sim-
plest (greedy) algorithms are more successful in the sub-
ject area under consideration.
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Let us repeat only the description of two the above-
mentioned concepts “anytime algorithm” and “sequence
of right subtasks”. Anytime algorithms are real-time al-
gorithms that have the best (at the moment) solution at
each specific moment of operation, the user can view
these pseudo-optimal solutions (also in real time), and
the sequence of such solutions gives usually in the limit
the optimal solution.

Apparently, more detailed definitions are not needed.
But here is a possible example of the practical applica-
tion for such anytime algorithms; this example, by the
way, is suitable for any difficult problem. Thus, let us
estimate the time to complete the entire task in 3 months,
and the customer (the boss, the user) wants to get at least
some acceptable solution much sooner; of course, it is
desirable that it is more or less close to the optimal one.
To say, he wants to obtain the first solution after 1 hour of
the program. If the total time to complete the entire task
is significantly more than 1 hour, then some solutions
that are close to optimal begin to be obtained “almost”
in 3 months, to say, in 2 months and 29 days. What
should we do? That is why we should use some addi-
tional heuristics, which give even a “more distant” solu-
tion. (comparing the usual BBM), but very quickly. One
of these heuristics (in fact, a modifications of BBM) is
the use of so-called 1-trees. The other is so-called right
tasks sequence, see Fig. 1.

Figure 1. The organization scheme of the sequence of right subtasks.

This heuristic is as follows. Each time we select the
next separating element in some subtask (let it be T; we
can also say “when getting the next right problem”) we
actually construct such a sequence when applying the
heuristic:

• task T itself,
• the right (sub)task of the task T,
• the right task of the right task of the task T,
• etc.

Certainly, each time the corresponding left problems are
constructed (and included in the list of problems for po-
tential solution in the future):

• the left task of the task T,

• the left task of the right task of the task T,
• etc.

The described process ends:

• either when obtaining a trivial problem (for exam-
ple, a zero-dimensional problem): in this case, we
remember its solution (the boundary, the tour re-
ceived at the time of its setting, and other charac-
teristics) as a pseudo-optimal solution of the current
time of the anytime algorithm;

• or when we get a sufficiently large boundary in
any problem, for example, greater than the pseudo-
optimal solution available at a given time.

Note that in practice, the described process of building a
sequence of right subtasks does not take much extra time
and does not lead to a large increase of the list of tasks
intended for potential solutions in the future.

Thus, we have described a simple process of construct-
ing an anytime algorithm based on some specific vari-
ant of BBM; it is in fact the truncated branches-and-
boundaries method.

The value of finding the optimal solution for the prob-
lem under consideration also lies in the fact that this
task can be extended to a number of emerging problem-
atic situations related to the allocation of resources on
communication network facilities. It is also obvious that
when considering this problem with parameters charac-
terizing the properties of reflectometers, as well as tak-
ing into account the topology of the communication net-
work, we get a model of optimal equipment placement,
which is close to the real one. The study of the problem
of optimal equipment placement is ultimately important
from the point of view of saving resources, which in the
case of high-dimensional communication networks can
be critical and thereby affect the most important techni-
cal indicators of the communication system.

3 Some similar formulations of the problems
of reflectometry. Informal description

From the general descriptions of BBM algorithms, let
us return directly to our problems. The relevance of the
subject area under consideration is primarily due to the
need to minimize the cost of so-called reflectometers; we
also consider the existing restriction on the condition of
total monitoring of fiber-optic cables. Solutions to spe-
cific discrete optimization problems arising in the sub-
ject area should contain:

• a subset of communication network objects on
which reflectometers should be placed,

• as well as an indication of a specific type of reflec-
tometer on an object whose technical characteristics
are parameters affecting the formation of the afore-
mentioned subset.

Similar problems arise when designing and / or upgrad-
ing a communication network, and they are especially
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important in situations where the communication net-
work has a very large dimension. The search for possi-
ble practical algorithms for solving this problem, which
is NP-hard, is the subject of this paper.

Thus, the purely engineering problem considered here
has an essential mathematical component, since with
large dimensions of the communication network, the
search for an exact solution becomes impossible and
requires research, first of all, approaches to the solu-
tion, including heuristic algorithms, synthesis of classi-
cal graph search algorithms, etc., as well as the devel-
opment of the solution algorithms themselves with their
approbation and computational experiments.

It is important to note that the mathematical formula-
tion of the problem that arose from the problem of opti-
mal placement of reflectometers on the communication
network can also be used for another, equally important
network problem, i.e., the problem of optimal placement
of repair crews (and necessary spare equipment) at com-
munication nodes; we propose to consider this slightly
modified formulation in future publications.

Let us move on to the informal description of the dis-
crete optimization problem considered in the paper. A
communication network is given in the form of an undi-
rected graph; at the same time, as is quite common in
our models ([Bulynin et al., 2020; Melnikov et al., 2020]
etc.), a pair of its coordinates is given for each vertex
of the graph. In addition, some types of “lighting de-
vices” are specified (hereinafter referred to as “lamps”,
and without quotation marks), and each type of lamp has
power (measured in units of length) and cost; with a fu-
ture solution, an unlimited number of lamps of each type
can be used. We have to put some lamps in some vertices
of the graph, in order to optimize the value of a special
goal function (which we shall talk about later).

In all models considered in the paper, we believe that a
lamp placed at a vertex illuminates all vertices located at
a distance not exceeding the power of this lamp (among
the illuminated vertices, of course, the vertex itself in
which this lamp is placed). It is possible to place a lamp
in a vertex (a lamp of the type we choose in the vertex
of the graph we choose) in the process of solving the
problem.

The complete statement of the problem includes a cer-
tain set of vertices of the graph, in which lamps are
forbidden to be placed. According to the terminol-
ogy used in our previous papers on the use of BBM in
discrete optimization problems (some references were
given above), such vertices can be called “taboo”; how-
ever, to be even more precise, this term should be at-
tributed not even to some vertices, but to pairs (vertex,
lamp), however, this seems to be unprincipled.

Besides, we note in advance that we did not use such
restrictions during the computational experiments de-
scribed below, although there is a possibility of such re-
strictions in our programs (data structures).

The task itself depends on the goal function; it usually

consists in the fact that it is necessary to illuminate the
maximum possible number of vertices, and among the
lamp placements that illuminate such a maximum possi-
ble number of vertices, we need to choose a set of ver-
tices that have a minimum cost. At the same time, nu-
merous variants of the goal function are possible:

• for example, some linear combination of the num-
ber of vertices and the total cost of lighting: it is
clear that in this case, such values are included in
the objective function with different signs;

• or a variant that somehow depends on the execution
time;

• etc.

Looking ahead, we note that any such option when de-
scribing the general algorithm of BBM and its software
implementation can be a criterion for ordering existing
subtasks in an array of pointers to these subtasks.

4 The formal graph model
The terminology of graph theory is consistent with

[Harary, 1969; Diestel, 1997; Gera et al., 2016; Karpov,
2017; Gera et al., 2018]. We shall give a formal model
for one of the possible simplified variants, when:

• there are no vertices of the graph in which lamps are
forbidden to be placed;

• all vertices need to be illuminated;
• the target function is selected as a minimum of the

cost of the lamps used.

Problem statement.
Input:

• undirected graph G = (V, E); assume that

V = { v1, v2, . . . , vm } , E = { e1, e2, . . . , en } .

• 2 coordinates for each of the vertices of the set V ,
defining the vertex of the graph as a point of the unit
square, i.e.

(∀i ∈ { 1, 2, . . . ,m }) (X(i) ∈ [0, 1], Y(i) ∈ [0, 1]);

we shall represent the coordinates in the program as
integers, from 0 to 106 (where 106 corresponds to
the value 1);

• k types of lamps; for each lamp there is a power
(lighting length) Dlin(i) and a cost Cost(i); both
these functions are set for each i ∈ { 1, 2, . . . , k }.

Auxiliary definition of the distance between vertices
vi and vj: the distance is the minimum length of the
path along the edges of the graph between these vertices,
where the edge length is calculated in the usual geomet-
ric way:

ρ(vi, vj) =
√
(X(i) − X(j))2 + (Y(i) − Y(j))2 ;
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this formula is true when (∃e ∈ E)(e = {vi, vj}), but
even if such a condition is false, the distance between the
vertices vi and vj (we defined it before) will be denoted
in the same way, i.e. ρ(vi, vj).

Intermediate solution: for i = { 1, 2, . . . ,m }, such so-
lution is the mapping

K : i → { 0, 1, 2, . . . , k } ;

in this case, any positive number (as the value of K)
means the number of the lamp placed at the vertex, and
0 means the absence of such lamp.

The cost of an interim solution:∑
i∈{ 1,2,...,m }

Cost(K(i)).

Acceptable solution: such is any intermediate solution
in which all vertices are illuminated; vertex v is illumi-
nated if and only if

(∃i ∈ { 1, 2, . . . ,m }) (ρ(v, vi) ⩽ Dlin(K(i)));

we allow the option VI = V .
Output: (pseudo-) optimal placement (as an acceptable

solution), for which the cost is minimized.
End of the problem statement description.

It is clear that the above formulation can be considered:

• both as a problem of finding an optimal solution;
• and as a a task of finding a pseudo–optimal solu-

tion (for example, in the presence of predefined time
constraints).

5 Greedy algorithm for solving the problem
The simplest goal function of the greedy algorithm,

which is used in the algorithm below, is to estimate the
number of newly illuminated vertices.

Formulation of the greedy algorithm.

Input, output: coincide with the input and output data
of the formulation of the problem given in previous sec-
tion.

Method.

Step 0. Initialization: as an intermediate solution, we
set the mapping K(i) = 0 for each i = 1, 2, . . . ,m.

Step 1. If the considered intermediate solution is an
acceptable solution, then exit the algorithm with it as the
answer (output).

Step 2. Choosing some i from the set i ∈
{ 1, 2, . . . ,m }, such that K(i) = 0; for it (for this i),
choosing some j from the set j ∈ { 0, 1, 2, . . . , k }; here,
the choice of the pair (i, j) is carried out in such a way as
to maximize the value N/Cost(j), where N is the num-
ber of newly illuminated vertices when placed in the i-th
vertex of the j-th lamp.

Step 3. If there is no possibility of choosing a pair (i, j)
at Step 2, exit the algorithm with the available interme-
diate solution as the answer.

Let us remark, that we leave this step in the descrip-
tion of the algorithm, although for such a description of
the problem statement and the algorithm under consid-
eration, such a lack of choice is impossible. And there-
fore, in our version, the answer will always be some ac-
ceptable solution (and not just an intermediate solution).
However, all this is possible in other similar situations.

Step 4. Adding the selected pair to the intermediate
solution (i.e., assigning K(i) = j) and going to Step 1.

End of the algorithm formulation.

In the remaining part of the paper, we consider the goal
function to be given (i.e., we believe that it is formulated
at Step 2 of the above algorithm) and we shall not specifi-
cally talk about its definition; however, we shall consider
its implementation.

6 Variants of solving the problem
by the branches-and-boundaries method

Let us firstly remark, that in the implementation of the
branches-and-boundaries method and in the process of
computational experiments, we considered some follow-
ing variants.

• The variant that does not use BBM, i.e., in fact, just
a greedy algorithm considered before.

• The variant “with a simple BBM”, in which it is pos-
sible to assign K(i) = j (for some possible i and j,
according to the condition of the problem); this as-
signment for the problem under consideration:

– is performed in its right subtask,
– is prohibited in its left subtask,
– and at the same time in the right subtask, it re-

mains unchanged until the end of its process-
ing.

Remark that according to the terminology of our
previous papers, this assignment in the left subtask
is the so-called taboo resolving element.

• The variant “with a complicated BBM”, in which
we allow the possibility of subsequent replacement
of the lamp with a brighter one (but not with a less
bright one). such a replacement makes sense on this
branch of computing.

• The variant “with a very complicated BBM”, in
which we allow the possibility of subsequent re-
placement of the lamp with both a brighter and a
less bright one. Remark that such a replacement
may indeed make sense: in the process of form-
ing an intermediate solution, a situation may arise
when everything “nearby” is already lighted, and at
the same time, unlike the results of preliminary cal-
culations performed using greedy heuristics, a “less
bright” lamp at the vertex in question is sufficient..
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Note that here, when implementing (or when presenting
data structures), there are three variants (not two vari-
ants, as almost always) for having a lamp for the future
step of BBM:

• “there exists” (such a lamp),
• “missing” (such a lamp),
• “prohibited” (such a lamp).

(Let us also repeat the brief description of all the vari-
ants mentioned in the introduction. We can say that we
are considering some variants of BBM, the conditions of
which can be ordered “from more hard”, where an ac-
tion once performed cannot be canceled, at least on the
branch of considered calculations, to “less hard”.)

Now, we give a formal description of one of these
BBM-algorithms.

Formulation of the simple variant of the branches-
and-boundaries method

Comment: in the formulation of the BBM-algorithm
described here, we do not use the auxiliary algorithm for
constructing a sequence of right subtasks, which we have
already mentioned above.

Input, output: coincide with the input and output data
of the formulation of the problem given in Section 4.

Method.

Step 0. Initialization consisting of the following ac-
tions.

• Create a list of subtasks consisting of a single sub-
task; in this initial subtask, we set the mapping
K(i) = 0 for each value i ∈ { 1, 2, . . . ,m }; note
that this mapping can also be considered as an inter-
mediate solution.

• Create the current pseudo–optimal solution coincid-
ing with such an intermediate solution.

Step 1. If the list of subtasks is empty, then exit the
algorithm with the answer that is the current pseudo-
optimal solution. (In other versions of the method, when
some other stop condition is met. First of all, such a pos-
sible stop condition is exceeding the pre-set time limits,
but many other options are also possible.)

Step 2. Selecting the first subtask from the available list
(and excluding it from the list). We shall call the selected
subtask the current one, denoting it, if necessary, T .

Step 3. On the basis of the subtask T , building its right
subtask (in a new memory segment), let it be Tr. A one-
time modification of the subtask T as its left subtask, let
it be Tl. The right subtask is built on the basis of the
greedy heuristics described above, and, similar to the al-
gorithm from section Section 5, is applied at this step
once. (At the same time, each of the two new subtasks,
i.e., Tr and Tl, may turn out to be “degenerate”, and in
this case, it will not be considered at the next steps of the
algorithm.)

Step 4. If the task Tr has a “small dimension”, then
we implement its final solution made by the brute force
method. If at the same time the obtained solution is bet-
ter than the current pseudo-optimal one, then we replace
the current pseudo–optimal solution with the newly ob-
tained one. Otherwise, if the “small dimension” is not
observed, then we add Tr to the list of subtasks; at the
same time, the ordering of this list goes according to the
criterion, which is a special modification of the greedy
heuristic.

Let us remark, that in relation to the problem we are
considering, “the small dimension” means a small num-
ber of vertices that have not yet been illuminated. At the
same time, the specific definition of a “small number”
depends on the specific implementation of the algorithm.

Step 4 ′. For the subtask Tl instead of Tr, repeat Step 4
and going to Step 1.

End of the algorithm description.

In conclusion of the section, we note that here, due to
the limitations on the volume of the paper, we do not
have the opportunity to describe in detail the additional
heuristics added to the above general description of the
branches-and-boundaries method. Therefore, we shall
here list them very briefly; thus, these are the following
possibilities.

• Preliminary formulation of several different variants
for choosing a separating element, [Melnikov, 2009;
Melnikov et al., 2021]. After that, choosing one of
them, for directly using in the BBM-method, by ad-
ditional application of risk functions, [Melnikov and
Radionov, 1998], including dynamically generated
ones.

• Clustering situations (in other words, clustering sub-
tasks), [Wang et al., 2009; Agichtein et al., 2012;
Blundell et al., 2012; Blundell and Yee, 2013;
Mehrotra and Yilmaz, 2017] etc. That means, in
some cases, the partial rejection of a detailed search
for a separating element using a greedy algorithm
and choosing instead of such a search for a separat-
ing element found earlier in a “similar” situation.

• Preliminary “sorting” of graph elements, [Melnikov
et al., 2020; Melnikov et al., 2021].

Let us add the two important remarks; each of them
applies to some above items and can be considered as
some “preprocessor actions”.

• About time of the execution of the algorithm. In our
previous publications, we have repeatedly noted that
such actions cannot “worsen” the execution of the
algorithm: we do not lose the ability to apply any
other separating elements on other branches of com-
puting. However, such actions can sometimes “im-
prove” the execution of the algorithm. Of course, it
is impossible to “prove” theoretically anything like
that, but in practice the time gain is often noticeable.
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• About “similar situations”. Here, the best option
would be an auxiliary algorithm for such an arrange-
ment of graph vertices (points), in which the total
distance between neighboring vertices (plus the dis-
tance from the last to the first) would be minimal.
However, this is a pure traveling salesman problem
(TSP), it is NP-hard, so of course it cannot be used
as an “auxiliary” one. And therefore we sometimes
use some fast heuristic auxiliary algorithms for such
an initial arrangement.

Some additional explanations of the algorithms dis-
cussed here can be found further in the description of the
software implementation. Moreover, we propose to pub-
lish the approach to software implementation in a sepa-
rate paper.

7 A possible approach to generating input data
for computational experiments

This section discusses algorithms for generating input
data for conducting computational experiments: unlike
most of the previously considered applied discrete op-
timization problems, here such generation is one of the
main components of the entire problem under considera-
tion (and the important part of the subject of this paper).

There is such a broad meaning of the concept of “rep-
resentativeness”; it characterizes those parameters that
will provide the most adequate result of the analysis of
the sample population. In a broad sense, the concept of
representativeness borders on the measure of correspon-
dence between the general population and the sample,
how accurately this sample describes the features of the
general population under study. At the same time, repre-
sentativeness is a measurable value, it can be determined
by the so–called representativeness error, i.e., the differ-
ence between the specially selected characteristics of the
sample and the general population. The final quantita-
tive value of representativeness is usually chosen as the
quadratic mean of its possible values obtained.

However in practice, the actual value of this difference
usually remains unknown. Therefore, a very difficult
task is modeling structural objects and at the same time
ensuring the representativeness of the model.

To study the behavior of structures and algorithms for
their processing, modeling of the components of combi-
natorial structures based on random generation of a set
of parameters is usually carried out. At the same time,
the representativeness of the generated structures should
be checked using statistical criteria specially adapted to
these tasks. An adequate model of the structure gener-
ates objects that are close to real ones. The degree of
approximation is also a separate subject of study of the
modeling process of various processes and subject areas.

Let us return directly to the problems of reflectometry
we are considering. Apparently, the title of this section
could be replaced with a stricter one: from our point of
view, we are considering the only possible approach to
representative generation of test data for such tasks. At

the same time, in most of the other tasks we considered
earlier ([Melnikov, 2009; Melnikov et al., 2021] etc.), we
paid significantly less attention to the representativeness
of test data generation. Generalizing, we can say that
representative data generation considered in this section
should not be used in the two following situations:

• either the concept of representativeness (or the ade-
quacy of the model) is the subject of the work, first
of all, when this concept is put in the title; see the
classical papers [Levin, 1984; Gurevich, 1984] and
also [Abbott et al., 2011; Chasalow and Levy, 2021]
etc.;

• or problems with deliberately “non–generatable”
(including “one-time”) input data are being inves-
tigated, which are taken exclusively from external
sources, [Melnikov et al., 2021] etc.; as a result, the
concept of continuous generation of input data in
them can hardly make any sense.

We specifically repeat that in all other situations we con-
sider representative generation of input data, similar to
the one described in this section, necessary.

Thus, our task does not apply to the listed groups
of problems. The fact that the approach is really the
only possible one for our problems is explained by the
complete impossibility of predicting in advance in these
problems:

• not only how these data themselves,
• but even possible characteristics–invariants of these

data.

On the other hand, if there is a possibility of such “pre-
dictions” (i.e., the possibility of successful use of such
characteristics), then we can, in particular, obtain a set
of tests close to real special cases of discrete optimiza-
tion problems, and already on these sets to investigate
the comparative characteristics of the algorithms being
developed for solving such problems, [Cormen et al.,
2009] etc.

As we said before, we propose to publish the approach
to software implementation in a separate paper.

In conclusion of the section, let us talk about the spe-
cific algorithms used to generate input data that we cur-
rently use:

• all vertices are initially supposed to be available for
any kind of lamps;

• as already noted, we set 4 types of lamps; each type
has its own “brightness” and cost.

8 Some results of computational experiments
and conclusion

This section summarizes the results of computational
experiment, and it is worth noting that in reality, the tem-
porary improvement of BBM compared to the greedy al-
gorithm has never exceeded 6%. This section is also the
conclusion (and, of course, the conclusion of the paper,
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but not the topics about the problems of reflectometry):
in it, we present preliminary outcome about the compar-
ative effectiveness of the algorithms considered for the
problems of reflectometry.

The computational experiments carried out by us can
be briefly described as follows.

• We generate graphs of “medium saturation”, and
at the same time, as we have already written, new
edges are added first of all “to more or less close
vertices”. That is, everything is done approximately
as in the computational experiments of many of our
previous topics related to the use of random graphs,
[Bulynin et al., 2020; Melnikov et al., 2021] etc.

• The specific constants we used: dimensions 29 and
99; 4 types of lamps.

• We manually selected the cost and power of these
lamps, in such a way that the greedy algorithm de-
scribed before for the vast majority of generated
special cases of the problem (95% of cases and more
for such “medium saturation graphs”) would use all
4 types of lamps.

• As a result, this greedy algorithm for dimension 99
processes all generated special cases of the problem
in less than 1 minute each.

We used a “medium power” computer. Specifically:
Intel(R) Core(TM) i7-8700 CPU@3.20GHz.

Two of the randomly generated special cases of the ob-
tained problem are as follows (for the before mentioned
dimensions 29 and 99 and the parameters of the gen-
eration function pNT->InitRnd(2,3,0.7);). We
manually selected the values of powers (lengths) equal
to 4 types of lamps respectively:

40 · 104, 18 · 104, 8 · 104 and 2 · 104.

(Let us repeat that we denote the lengths of the sides of
the unit square as 106, and therefore, for example, the
value 40 · 104 actually represents 40 · 104−6 = 0.4.)
As we already mentioned, When applying these values,
the greedy algorithm almost always advise to the use of
all 4 types of lamps. Then the “median” examples we
have obtained for the above two dimensions are as fol-
lows (the sample of output text of the program is given):

dim=29,
number of illuminated=29,
cost=196
used lamps by type:
1-1 2-2 3-2 4-5

and

dim=99,
number of illuminated=99,
cost=311
used lamps by type:
1-2 2-3 3-6 4-2

It can also be noted in addition to the above, that a signif-
icant increase of the dimension of the problem does lead
neither to a significant increase in the number of lamps
in the answer, nor to a significant increase the cost of this
answer.

(It is also worth noting that the use of the greedy al-
gorithm almost coincides with one of the auxiliary al-
gorithms used in the multiheuristic approach to discrete
optimization problems, which is a possible extension of
the branches-and-boundaries method, see Section 2 of
this paper and also [Melnikov, 2009] etc. Namely, we
mean the construction of the sequence of right subtasks,
see before. We already noted that the use of this aux-
iliary algorithm does not slow down the time of BBM;
this thing can be explained theoretically and shown in
practice. However, it is clear that in practice it is always
desirable to use simpler algorithms.)

Let us return directly to the problems of reflectometry.
It is the use of all 4 types of lamps that gives grounds
to talk about the repeatability of the input data, and,
consequently, to draw preliminary conclusions about the
use of similar algorithms for much larger dimensions.
As we have already said, in our calculations for the
branches-and-boundaries method, there was practically
no improvement in performance compared to the greedy
algorithm. In connection with what was said in this sec-
tion about constructing a sequence of the sequence of
right subtasks, BBM did not have any time delays (they
did not exceed 10% compared to the greedy algorithm),
but there was no significant improvement in the qual-
ity of the solution: for example, for dimension 99 and
some dozen examples considered, the maximum cost im-
provement the decision has never exceeded 6%. Note
also that above, we have actually given all the important
fragments of the program, and therefore it is very easy to
repeat our calculations (with the above lamp values); the
results should be almost the same as our ones. Therefore,
we do not provide more detailed calculation results.

Thus, the obtained temporary improvement in the aver-
age operating time of this algorithm in the applied prob-
lem we have considered, compared with the greedy algo-
rithm, is very small. This allows us to draw preliminary
conclusions that in the problems of reflectometry, the use
of the simplest greedy algorithms is sufficient, and we
should not use more complex algorithms, in particular,
branches-and-boundaries method. (“A negative result is
also a result”, attributed to T. Edison.)

At the very end of the article we note, that the consid-
ered problem can also be extrapolated to cases of opti-
mal placement of other resources on the objects of the
communication network. At the same time, of course,
there will be another formalization of constraints in the
presence of an objective function. But the approaches to
choosing the optimum may be identical, which thereby
makes the results obtained in the paper more valuable
due to their participation in future potential generaliza-
tions of the problem.
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