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1. INTRODUCTION

The adaptive control of nonlinear systems has
attracted a great deal of attention. As a result,
many sorts of adaptive strategies based on the
above mentioned geometric theory for nonlinear
controlled systems were proposed in the early
90’s (Kanellakopoulos et al., 1991a; Campion and
Bastin, 1990; Sastry and Isidori, 1989; Pomet
and Praly, 1992; Seron et al., 1995). Most of
them, unfortunately, had been based on the state
feedback strategies. Concerning output feedback
based adaptive controls for nonlinear systems,
adaptive output feedback controller designs based
on backstepping strategy (Kanellakopoulos et al.,
1991b; Krstic et al., 1995) have been widely devel-
oped (Marino and Tomei, 1993; Mizumoto et al.,
2003). These adaptive output feedback methods
essentially utilize an output feedback exponential
passive (OFEP) property (Fradkov and Hill, 1998)
of the controlled system in order to verify the
stability of the control system. A nonlinear sys-
tem is said to be OFEP (output feedback expo-
nentially passive) if there exists an output feed-

back such that the resulting closed loop system
is exponentially passive (Fradkov and Hill, 1998).
The sufficient conditions for a nonlinear system
to be OFEP have been provided (Fradkov and
Hill, 1998) such as (1) the system has a relative
degree of one, (2) the system be globally exponen-
tial minimum-phase and (3) the nonlinearities of
the system satisfy the Lipschitz condition. It has
been shown that, under these conditions, one can
easily stabilize uncertain nonlinear systems with a
simple high-gain output feedback based adaptive
controller (Allgower et al., 1997; Fradkov, 1996;
Fradkov et al., 1999). It has been shown that the
methods have a strong robustness with respect
to bounded disturbances in spite of its simple
structure. Therefore the control methods based on
the OFEP property of the controlled system are
considered one of the powerful control tools for
uncertain nonlinear systems. Unfortunately how-
ever, since most practical systems do not satisfy
the OFEP conditions mentioned above, the OFEP
conditions have imposed very severe restrictions
to practical application of OFEP based adaptive
output feedback controls. The backstepping strat-



egy is adopted to realize a virtual OFEP sys-
tem. However, using the backstepping strategy in
controller designs, the structure of the controller
might become complex for a system with a higher
order relative degree because the number of steps
in the recursive design of the controller through
backstepping depends on the order of the relative
degree of the controlled system. As an alternative
method to realize an OFEP controlled system,
the introduction of a parallel feedforward compen-
sator (PFC) in parallel with the controlled non-
OFEP system has been developed (Fradkov, 1996;
Fradkov et al., 1999). This is a simple and innova-
tive method to alleviate the restrictions imposed
by the relative degree and/or the minimum-phase
conditions on the OFEP property. However, the
provided design methods of the PFC were only
for minimum-phase systems with higher relative
degrees and required a priori knowledge of non-
linearities in the control input term.

In this report, we propose a PFC design method
which realizes a nonlinear system with OFEP
property. The nonlinear systems dealt with here
are exponentially stable but not restricted to
minimum-phase and the existance of uncertain
nonlinearities in the control input term. Firstly, it
is shown that the exponentially stable nonlinear
system can be rendered exponentially minimum-
phase by introducing a PFC irrespective of its
minimum-phase property. After that, the realiza-
tion of the OFEP nonlinear system with the PFC
will be shown.

2. PRELIMINARIES

Consider SISO affine nonlinear systems:

ẋ(t) = f(x) + g(x)u(t), y(t) = h(x) (1)

where x(t) ∈ Rn is a state vector, u(t) ∈ R
is a control input, y(t) ∈ R is an output, and,
f(x), g(x) : Rn → Rn, h(x) : Rn → R are
sufficiently smooth (e.g. of class C∞) functions
such that f (0) = 0, h(0) = 0. We assume that
the system (1) has a relative degree of γ in Rn.

It is well known (Isidori, 1995) that if the system
has relative degree of γ in Rn, then there exists a
smooth nonsingular change of coordinate: z(t) =
[z1, z2, · · · , zn]T = Φ(x), ∀x ∈ Rn such that the
system (1) can be transformed into the following
normal form:

żi(t) = zi+1(t) (i = 1, · · · , γ − 1)
żγ(t) = a(zξ, η) + b0b(zξ, η)u(t)
η̇(t) = q(zξ, η)
y(t) = z1(t)

(2)

where
zξ(t) = [z1(t), · · · , zγ(t)]T (3)

η(t) = [zγ+1(t), · · · , zn(t)]T (4)

and
a(0,0) = Lγ

fh(0) = 0, q(0,0) = 0

b(zξ, η) = LgL
γ−1
f h(x) �= 0 ∀x ∈ Rn (5)

Definition 1:(output feedback exponentially pas-
sive: OFEP) (Fradkov and Hill, 1998) The system
1 is called OFEP, if there exists an output feed-
back: u = α(y) + β(y)v (6)
such that the resulting closed loop system from v
to y is exponentially passive, that is for the closed
loop system, the following DI is satisfied

V̇ (x) =
∂V (x)

∂x
(f(x) + g(x)v) ≤ yv (7)

with V which is a (C2) positive definite function
having the following properties:

δ1||x||2 ≤ V (x) ≤ δ2||x||2
δ3||x||2 ≤ S(x) (8)

where δ1 ∼ δ3 are positive constants and S(x) is
a positive definite function.

3. PROBLEM STATEMENT
Let’s consider an exponentially stable nonlinear
system (2) with a relative degree of γ(γ ≥ 2).
Now, express the system (2) as follows:

ż = fz(z) + b0b(z, t)u
y = [1, 0, · · · , 0]z = z1

(9)

where
z =

[
zT

ξ , ηT
]T

(10)

fz(z) = [z2, · · · , zγ , a(z), q(z)]T (11)

b0 = [0, · · · , 0, 1︸ ︷︷ ︸
γ

, 0, · · · , 0︸ ︷︷ ︸
n−γ

]T (12)

We impose the following assumptions on the sys-
tem (9).

Assumptions:

(A-1) the system (9) is exponentially stable.
(A-2) there exist positive constants L1, L2 and

functions ga, gq such that a(zξ,η) and
q(zξ,η) can be evaluated as

|a(zξ1,η)−a(zξ2,η)|
≤L1 |zξ1γ−zξ2γ |+ga(zξ1,zξ1γ , zξ2,zξ2γ ,η)

(13)

‖q(zξ1,η)−q(zξ2,η)‖
≤L2 |zξ1γ−zξ2γ |+gq(zξ1,zξ1γ , zξ2,zξ2γ ,η)

(14)

where ga, gq are any functions such as

ga(zξ,zξ1γ , zξ,zξ2γ ,η) = 0 (15)

gq(zξ,zξ1γ , zξ,zξ2γ ,η) = 0 (16)

(A-3) there exist positive constants bm ≤ bM such
that 0 < bm ≤ b(z, t) ≤ bM .



(A-4)
∣∣ d
dtb(z, t)

∣∣ ≤ ρ, ρ > 0.
(A-5) b(z, t) can be expressed as

b(z, t) = b(z1, · · · , zγ−1, η, t) (17)

In this report, we propose a design scheme of a
PFC which makes the resulting augmented system
with the PFC exponentially minimum-phase and
show that one can realize the OFEP system by
designing the PFC with a relative degree of 1.

4. PFC DESIGN FOR REALIZATION OF
OFEP SYSTEM

4.1 Design of a PFC

We first derive design conditions of a PFC which
realizes an exponentially minimum-phase system.

Let’s introduce the following PFC with a relative
degree of γf (γf < γ) for the system (9).

żf = Afzf + bfu
yf = zf1 = [1, 0, · · · , 0]zf

(18)

where

zf =




zf1

...
zfγf


 , Af =




0 1 0 · · · 0
...

. . . . . . . . .
...

...
. . . . . . 0

0 · · · · · · 0 1
f1 · · · · · · · · · fγf




, bf =



0
...
0
kf


(19)

The resulting augmented system with the PFC
(18) can be represented by

[
ż
żf

]
=
[
f z(z)
Afzf

]
+
[
b0b(z)

bf

]
u

ya = y + yf

(20)

Here, we will show design conditions of the PFC
(18) with which the zero dynamics of the aug-
mented system (20) are exponentially stable.

Now, consider deriving zero dynamics of the aug-
mented system (20). Using the following nonsin-
gular change of coordinate:

[zT
aξ, η

T
a1, η

T
a2]

T = Φz(zξ, η, zf )

with
zaξ =

[
za1, · · · , zaγf

]T (21)

ηa1 =
[
za(γf+1), · · · , za(γf+γ)

]T (22)

ηa2 =
[
za(γf+γ+1), · · · , za(γf+n)

]T (23)

and

zai = zi + zfi (i = 1, · · · , γf )
za(γf+j) = zj (j = 1, · · · , γ − 1)

za(γf+γ) = zγ − 1
kf

b(z, t)zfγf

za(γf+k) = zk (k = γ + 1, · · · , n),

(24)

the transformed system can be represented as

żaξ =




ż1 + żf1

...
żγf

+ żfγf


=




za2

...
zaγf

zγf+1 + fT zf + kfu


 (25)

η̇a1 =




za(γf+2)

...
za(γf+γ−1)

za(γf+γ) +
1
kf

b(z, t)zfγf

a(zξ, η) − 1
kf

ḃ(z, t)zfγf

− 1
kf

b(z, t)fT zf




(26)

η̇a2 =



żγ+1

...
żn


 = η̇ = q(zξ, η), (27)

where f =
[
f1, · · · , fγf

]T . It is apparent that the
augmented system has a relative degree of γf from
(25).

Defining

p1 = [0, · · · , 0, 1]T ∈ Rγf (28)

p2 = [0, · · · , 0,−1︸ ︷︷ ︸
γf

, 0, · · · , 0︸ ︷︷ ︸
γ−γf

]T ∈ Rγ (29)

P3 =
[
Iγf

,0
] ∈ Rγf×γ (30)

p4 = [0, · · · , 0, 1]T ∈ Rγ (31)

P5 = p4p
T
1 ∈ Rγ×γf (32)

P6 = p4p
T
2 ∈ Rγ×γ , (33)

zfγf
, zf and zξ can be represented by

zfγf
= pT

1 zaξ+pT
2 ηa1 (34)

zf = zaξ − P3ηa1 (35)

zξ = ηa1 +
1
kf

b(z, t) (P5zaξ + P6ηa1) . (36)

We have from (26),(34),(35) that

ża(γf+γ−1) = za(γf+γ)

+
1
kf

b(z, t)
(
pT

1 zaξ+pT
2 ηa1

)
(37)

ża(γf+γ) = a(ηa1, ηa2)

+{a(zξ, ηa2)−a(ηa1, ηa2)}
− 1

kf
ḃ(z, t)

(
pT

1 zaξ + pT
2 ηa1

)

+
1
kf

b(z, t)
(
pT

7 zaξ + pT
8 ηa1

)
(38)

where
p7 = −f (39)

pT
8 = fT P3 = [f1, · · · , fγf

, 0, · · · , 0︸ ︷︷ ︸
γ−γf

]. (40)

Thus η̇a1 can be expressed as



η̇a1=




za(γf+2)

...
za(γf+γ)

a(ηa1, ηa2)


+p4 {a(zξ, ηa2)−a(ηa1, ηa2)}

+
1
kf

b(z, t) (P9zaξ + P10ηa1)

− 1
kf

p4ḃ(z, t)
(
pT

1 zaξ + pT
2 ηa1

)
, (41)

where
P9 = [0, · · · ,0, p1, p7]

T ∈ Rγ×γf (42)

P10 = [0, · · · ,0, p2, p8]
T ∈ Rγ×γ . (43)

Further, since η̇a2 can be represented by

η̇a2 = q(zξ,η)

= q(ηa1,ηa2)+{q(zξ,ηa2)−q(ηa1,ηa2)} ,(44)

defining ηa =
[
ηT

a1, η
T
a2

]T , the augmented system
is expressed as

żaξ =




za2

...
zaγf

zγf+1 + fT zf


+




0
...
0
kf


u

η̇a = qa(zaξ, ηa),

(45)

where
qa(zaξ, ηa)

= fz(ηa) + p11 {a(zξ, ηa2) − a(ηa1, ηa2)}
+

1
kf

b(z, t)
[
Iγ

0

]
(P9zaξ + P10ηa1)

− 1
kf

p11ḃ(z, t)
(
pT

1 zaξ + pT
2 ηa1

)

+
[

0
In−γ

]
{q(zξ, ηa2) − q(ηa1, ηa2)} (46)

and
p11 =

[
pT

4 ,0T
]T ∈ Rn. (47)

Thus the zero dynamics η̇∗
a = qa(0, η∗

a) of the
augmented system is obtained as follows:

η̇∗
a = f z(η

∗
a) + p11 {a(φ, η∗

a2) − a(η∗
a1, η

∗
a2)}

+
1
kf

b(φ, η∗
a2, t)

[
Iγ

0

]
P10η

∗
a1

− 1
kf

p11ḃ(φ, η∗
a2, t)p

T
2 η∗

a1

+
[

0
In−γ

]
{q(φ, η∗

a2) − q(η∗
a1, η

∗
a2)} . (48)

Where φ denotes zξ at zaξ =0, and from (36), it
can be expressed by

φ = η∗
a1 +

1
kf

b(φ, η∗
a2, t)P6η

∗
a1. (49)

It should be noted that since the system (9)
is exponentially stable from assumption (A-1),
there exist a positive definite function V1(η∗

a) and

positive constants α1 ∼ α4 such that (Sastry and
Isidori, 1989; Khalil, 1996)

∂V1(η∗
a)

∂η∗
a

f z(η
∗
a) ≤ −α1 ‖η∗

a‖2 (50)∥∥∥∥∂V1(η∗
a)

∂η∗
a

∥∥∥∥ ≤ α2 ‖η∗
a‖ (51)

α3 ‖η∗
a‖2 ≤ V1(η∗

a) ≤ α4 ‖η∗
a‖2 (52)

Theorem 1: For a system (9) which satisfies as-
sumptions (A-1) to (A-5), consider an augmented
system (20) with a PFC (18). Then the augmented
system is exponentially minimum-phase provided
that the PFC gain kf is designed such that

kf >
β1

α1
, (53)

where β1 = α2 {bM (L1 + L2 + ‖P10‖) + ρ} and
L1, L2 are positive constants satisfying (13) and
(14) respectively. α1, α2 are positive constants in
(50) and (51), and P10 has been defined in (43).

Proof: The time derivative of V1(η∗
a) is obtained

by

V̇1(η∗
a) =

∂V1

∂η∗
a

f z(η
∗
a)

+
∂V1

∂η∗
a

[
p11{a(φ,η∗

a2)−a(η∗
a1,η

∗
a2)}

+
1
kf

b(φ, η∗
a2, t)

[
Iγ

0

]
P10η

∗
a1

− 1
kf

p11ḃ(φ, η∗
a2, t)p

T
2 η∗

a1

+
[

0
In−γ

]
{q(φ, η∗

a2) − q(η∗
a1, η

∗
a2)}

]
(54)

Since we have from assumptions (A-2), (a-3) that

|a(φ,η∗
a2) − a(η∗

a1,η
∗
a2)| ≤

1
kf

L1bM ‖η∗
a‖(55)

‖q(φ,η∗
a2) − q(η∗

a1,η
∗
a2)‖ ≤

1
kf

L2bM ‖η∗
a‖(56)

and we have from assumption (A-4) that

1
kf

∥∥∥p11ḃ(φ, η∗
a2, t)p

T
2 η∗

a1

∥∥∥ ≤ 1
kf

ρ ‖η∗
a‖ , (57)

we obtain

V̇1(η∗
a)≤ ∂V1

∂η∗
a

fz(η
∗
a) +

1
kf

∥∥∥∥ ∂V1

∂η∗
a

∥∥∥∥ (L1bM + L2bM

+ ‖P10‖ bM + ρ) ‖η∗
a‖ . (58)

Finally, using (50),(51) and (52), V̇1(η∗
a) can be

evaluated as



V̇1(η∗
a)≤−α1 ‖η∗

a‖2 +
1
kf

α2(L1bM + L2bM

+ ‖P10‖ bM + ρ) ‖η∗
a‖2

= −
(

α1 − 1
kf

β1

)
‖η∗

a‖2

≤−
(

α1 − 1
kf

β1

)
1
α4

V1(η∗
a). (59)

Thus, the zero dynamics of the augmented system
(20) is exponentially stable provided that kf is
designed such that (53) is satisfied.

4.2 Realization of OFEP system

Introducing a PFC (18) with a relative degree of
γf = 1 to the system (9), the resulting augmented
system can be represented by

żaξ = fa(zaξ, ηa) + kfu
η̇a = qa(zaξ, ηa)
ya = zaξ.

(60)

Here, from (25)

fa(zaξ,ηa)=




{
1
kf

b(z,t)+f1

}
(za1−za2)+za3

for γ = 2
f1 (za1 − za2) + za3

for γ ≥ 3

(61)

and fa(zaξ,ηa) can be evaluated as

|fa(zaξ,ηa)| ≤ fa1 |zaξ| + fa2 ‖ηa‖ (62)

where

fa1 =




1
kf

bM + f1 for γ = 2

f1 for γ ≥ 3
(63)

fa2 =




1
kf

bM + f1 + 1 for γ = 2

f1 + 1 for γ ≥ 3
(64)

Further from the fact that

b(zξ, η, t) = b(φ, ηa2, t) (65)

ḃ(zξ, η, t) = ḃ(φ, ηa2, t) (66)

under assumption (A-5), we have

‖qa(ya, ηa) − qa(0, ηa)‖
≤
∥∥∥∥p11 {a(zξ, ηa2) − a(φ, ηa2)}

+
1
kf

b(zξ, η, t)
[

Iγ

0

]
p9ya

+
1
kf

{b(zξ, η, t) − b(φ, η, t)}P10ηa1

− 1
kf

p11ḃ(zξ, η, t)pT
1 ya

− 1
kf

p11

{
ḃ(zξ, η, t) − ḃ(φ, η, t)

}
pT

2 ηa1[
0

In−γ

]
{q(zξ, ηa2) − q(φ, ηa2)}

∥∥∥∥

≤ |a(zξ, ηa2) − a(φ, ηa2)| +
1
kf

bM ‖p9‖ |ya|
1
kf

ρ |ya| + ‖q(zξ, ηa2) − q(φ, ηa2)‖

≤ 1
kf

K1 |ya| , (67)

where K1 = bM (L1 + L2 + ‖p9‖) + ρ.

Then we have the following theorem.

Theorem 2: Consider an augmented system (60)
with a PFC having a relative degree of γf = 1.
Suppose that PFC gain kf satisfies the condition
(53). Then, with an input:

u =
−K

kf
ya +

1
kf

v, K > 0, (68)

the resulting closed loop system from v to ya is
exponentially passive for a sufficiently large.

Proof: The resulting closed loop system with the
input (68) can be represented by

ẏa(t) = fa(ya, ηa) − Kya(t) + v(t) (69)

η̇a(t) = qa(ya, ηa). (70)

Since the zero dynamics of the system (60):

η̇a(t) = qa(0, ηa) (71)

is exponentially stable from Theorem 1, there
exist a positive definite function W (ηa) which
satisfies the following relations:

∂W (ηa)
∂ηa

qa(0, ηa) ≤ −κ1 ‖ηa‖2 (72)∥∥∥∥∂W (ηa)
∂ηa

∥∥∥∥ ≤ κ2 ‖ηa‖ (73)

κ3 ‖ηa‖2 ≤ W (ηa) ≤ κ4 ‖ηa‖2
, (74)

where κ1 ∼ κ4 are appropriate positive constants.

Now consider the following positive definite func-
tion:

V (ya, ηa) = W (ηa) +
1
2
y2

a(t). (75)

The time derivative of V (ya, ηa) is obtained from
(60) as

V̇ (ya, ηa) =
∂W (ηa)

∂ηa

η̇a(t) + ya(t)ẏa(t)

=
∂W (ηa)

∂ηa

qa(ya, ηa) + ya(t)fa(ya, ηa)

−Ky2
a(t) + ya(t)v(t). (76)

Since we have from (72), (73) and (67) that



∂W (ηa)
∂ηa

qa(ya, ηa)

=
∂W (ηa)

∂ηa

qa(0,ηa)

+
∂W (ηa)

∂ηa

{qa(ya,ηa)−qa(0,ηa)}

≤−κ1 ‖ηa‖2

+
∥∥∥∥∂W (ηa)

∂ηa

∥∥∥∥ ‖qa(ya, ηa) − qa(0, ηa)‖

≤−κ1 ‖ηa‖2 + κ2
1
kf

K1 |ya| ‖ηa‖ , (77)

and we have from (62) that
yafa(ya, ηa) ≤ fa1y

2
a + fa2 |ya| ‖ηa‖ , (78)

the time derivative of V (ya, ηa) can finally be
evaluated by

V̇ (ya, ηa)

≤−κ1 ‖ηa‖2 +
(

κ2
1
kf

K1 + fa2

)
|ya| ‖ηa‖

− (K − fa1) y2
a + yav

≤− (κ1 − µ) ‖ηa‖2

−


K − fa1 −

(
κ2

1
kf

K1 + fa2

)2

4µ


 |ya|2 + yav

(79)

with any positive constant µ.
Setting 0 < µ < κ1, for a K such as

K > K0 = fa1 +

(
κ2

1
kf

K1 + fa2

)2

4µ
, (80)

we obtain

V̇ (ya, ηa) ≤ −c1 ‖ηa‖2 − c2 |ya|2 + yav (81)
where c1, c2 are positive constants such that

c1 = κ1 − µ > 0 (82)

c2 = K−K0 > 0, K0 = fa1+

(
κ2

1
kf

K1+fa2

)2

4µ (83)

Thus, for a sufficiently large K such as K > K0,
the closed loop system from v to ya is exponen-
tially passive (Fradkov and Hill, 1998) and we can
conclude that the system is OFEP.

Note that for the OFEP augmented system, one
can easily design an adaptive output feedback
controller of the form:

u = −kya, k̇ = −γIy
2
a, γI > 0 (84)

5. CONCLUSIONS
In this report, we proposed a PFC design method,
which realizes a nonlinear system with OFEP
property, for exponentially stable systems. The
nonlinear systems dealt with here were exponen-
tially stable but the proposed method can design

PFCs irrespective of its minimum-phase property
and the existence of uncertain nonlinearities in the
control input term.
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