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Abstract
This paper presents a method to manipulate the

chaotic behavior of the Duffing oscillator by employ-
ing a modified Delta modulator based on hysteresis
modeling. Numerical experiments are given to support
our design. Chaos is evidenced by utilizing Poincaré
maps.
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1 Introduction
The Duffing system represents a single-mode approx-

imation to the magnetically buckled beam governed
by a periodically excitation force [Thomsen, 2003],
[Khalil, 2003]. This oscillator is one of the most
studied nonlinear dynamical systems, which serves
as a model for various physical and engineering
problems, such as particle in a forced double well,
particle in a plasma, a defect in solids [Sharma, et
al. 2012]. Moreover, diverse Duffing oscillators have
been analyzed to clarify a wide range of physical
applications in the real-world [Liu and Suh, 2012],
such as mechanical structures, electric circuits, and
biological systems [Danca and Lung, 2002], among
others. On the other hand, one essential feature of
the Duffing oscillator is its chaotic behavior when the
Duffing system parameters are set to specific data.

Additionally, the digital Delta modulation is a simple
and robust method of analog to digital conversion
technique useful in systems requiring serial digital
communications of analog signals [Donald, 1996]. It
consists of a comparator in the forward path and an
integrator in the feedback path of a simple control loop
[Donald, 1996]. Furthermore, the Delta modulator
has been used to translate continuous (on an average
sense) feedback control signal into an implementable

switch one with practically the same closed-loop
performance than the continuous case [Morales et al.,
2013]. Here, we propose a dynamic model of the
digital Delta modulator useful to the objective of this
paper. This example is based on hysteresis modeling
presented in [Acho and Vidal, 2011] and [Acho, 2013].

The objective of this paper is to show how the Poincaré
map of the chaotic Duffing oscillator can be altered by
employing our proposed Delta modulator (to translate
the Delta modulator from its digital version to an
analog one). According to numerical experiments, the
Duffing attractor and its Poincaré map can be altered
preserving chaos.

2 Delta Modulator Modeling
The basic of the digital Delta modulator is shown

in Fig. 1. The digital output, upw(t), is either high
or low at any given time. If u(t) is grater than the
integrator output, upw(t) will be high and then the
integrator output will be ramping up. Conversely, if
u(t) is lower than the integrator output, upw(t) will
be low and then the integrator output will be ramping
down. The comparison is done at each clock period
[Donald, 1996].

To realize an analog version of the digital Delta mod-
ulator, the scheme shown in Fig. 2 is proposed. The
hysteresis block is employed as an alternative to the
digital comparator. In this way, a kind of pause is ac-
quired in the comparator process. A dynamic model of
the hysteresis is suggested in [Acho, 2013], and [Acho
and Vidal, 2011]:

ż = c[−z + b sign(x+ a sign(z))], (1)
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where the parameters a, b are described in Fig. 4. The
parameter c regulates the dynamic time-transition from
b to −b (and viceversa) of z(t). For instance, if

x(t) = u(t) = sin(t), (2)

upw(t) = z(t), (3)

and a = 0.1, b = 2, and c = 10, Fig.5 shows the
simulation result of the hysteresis behavior stated in
(1). According to [Donald, 1996], integrating upwm(t)
(see Fig. 3), an estimation of u(t) is obtained (see
Fig. 6, û(t) = ug(t) is the estimation of u(t)). In the
numerical simulation experiments, we use the Euler
method with an integration step-size of 0.01 seconds.
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Figure 1. Block diagram of the delta modulator.
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Figure 2. Analog Delta modulator model.
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Figure 3. An integrator to estimate u(t).
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Figure 4. Hysteresis.
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Figure 5. The output of the Delta modulator upw(t) versus time.
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Figure 6. The estimation signal ug(t) (the continuous-green line)
and the base signal u(t) (the dotted-blue line), versus time.

3 Chaotic Duffing Oscillator Using the Delta Mod-
ulator

Given the chaotic Duffing oscillator:

ẍ+ 0.2ẋ− x+ x3 = 0.3f(t), (4)
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with f(t) = sin(t), we modify it as follows (see Fig.
7):

ẍ + 0.2ẋ− x+ x3 = 0.3upwm(t), (5)
ż = c[−z + b sign(ue + a sign(z))], (6)

u(t) = sin(t), (7)
ẏ = z(t), (8)

ue(t) = u(t)− y(t), (9)
upwm(t) = z(t). (10)

Using a = 0.01 and c = 10, simulation results
for several values of b are shown in Figures 8-19
(x(t) = x1(t), and ẋ(t) = x2(t)). From these figures,
we can appreciate that the chaotic behavior of the
Duffing oscillator can be altered using our design.
In all the numerical experiments, the corresponding
Poincaré maps were obtained by plotting the sequence
of points (x(tk), ẋ(tk)), with tk = t0+2πk [Thomsen,
2003]. According to [Thomsen, 2003], this tool is a
valid tool to detect chaos. On the other hand, trying to
find the Lyapunov exponents will be difficult due to the
no-smooth conduct of the input signal to the Duffing
system.

+
-

Integrator

u(t) pwu (t)
Hysteresis

=sin(t)

y(t) y(t)
.

u  (t)e z(t)=
Duffing Oscillator

x(t) x(t)
.

Figure 7. The Modified Duffing oscillator using the proposed Delta
modulator.
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Figure 8. Sensibility condition test (b = 1).
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Figure 9. Chaotic attractor (b = 1).
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Figure 10. Poincaré map (b = 1).
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Figure 11. Sensibility condition test (b = 10).
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Figure 12. Chaotic attractor (b = 10).
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Figure 13. Poincaré map (b = 10).
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Figure 14. Sensibility condition test (b = 100).
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Figure 15. Chaotic attractor (b = 100).
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Figure 16. Poincaré map (b = 100).
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Figure 17. Sensibility condition test (b = 150).



8 CYBERNETICS AND PHYSICS, VOL. 3, NO. 1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x
1

x 2

Figure 18. Chaotic attractor (b = 150).
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Figure 19. Poincaré map (b = 150).

4 Conclusions
A design based on a modified Delta modulator has

been proposed to drive the Duffing oscillator as an op-
tion to manipulate its chaotic dynamics. Although there
exist other ways to manipulate the Duffing system (see,
for instance [Kakmeni et al., 2004]), our propose is ob-
tained from an application of digital communication
systems employing Delta modulators. Moreover, the
obtained Duffing oscillator corresponds to a four-order
dynamic system (it could be an hyper-chaotic system).
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