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Abstract: Predictive and optimal process control using finite Markov chains is
considered. A basic procedure is outlined, consisting of space discretization; model
conversion; specification of costs; computation of control policy; and, analysis
of the closed-loop system behavior. A simulation illustrates the fiability of the
approach using a standard office PC. Discussion of nonlinear process control
emphasizing in on-line learning from uncertain data ends the paper.
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1. INTRODUCTION

Many engineering problems can be modelled
as controlled Markov chains (Puterman, 1994)
(Häggström, 2002) (Poznyak et al., 2000). The
basic idea is simple. The system state space is
quantized (discretized, partitioned, granulated)
into a finite set of states (cells), and the evolution
of system state in time is mapped in a probabilis-
tic (frequentist) manner. With controlled Markov
chains, the mappings are constructed from each
state-action pair.

Once equipped with such a model, a control action
for each state can be deduced by minimizing a
cost function defined in a future horizon, based
on specification of immediate costs for each state-
action pair. Specification of immediate costs al-
lows versatile means for characterising the de-
sired control behavior. Dynamic programming,
studied in the field of Markov decision processes
(MDP), offers a way to solve various types of
expected costs. However, applications of MDP in
process control have been few, as pointed out
in (Lee and Lee, 2004) (see also (Ikonen, 2004)
(Negenborn et al., 2005)); instead, the model pre-
dictive control paradigm is very popular in the

process control community. Whereas not-so-many
years ago the computations associated with finite
Markov chains were prohibitive, the computing
power available using cheap office-pc’s motivates
a re-exploration of these techniques.

As the basic ideas are old (Riordon, 1969), well-
known, and widespread, relevant literature can
be found from many fields and under differ-
ent keywords: generalized cell-to-cell mapping
(Hsu, 1987), qualitative modelling (Lunze et al.,
2001), and reinforcement learning (Kaelbling et
al., 1996), for example. A large part of the cur-
rent literature on MDP examines means to over-
come the problem curse-of-dimensionality, e.g., by
means of function approximation (neuro-dynamic
programming, Q-learning, etc.). The main obsta-
cle in such approaches is in that the unknown
properties introduced by the mechanisms of func-
tion approximation make void the fundamen-
tal benefit of applying finite Markov chains: a
straightforward and elegant means to describe and
analyse the dynamic characteristics of a stochastic
nonlinear system. Recall how linear systems are
limited by the extremely severe assumption of
linearity (affinity), yet they have turned out to
be outmost useful for control design purposes. In



a similar way, the finite Markov chains are funda-
mentally limited by the resolution of the prob-
lem presentation (discretization of state-action
spaces). The hypothesis of this work is that keep-
ing in mind this restriction (just as we keep in
mind the assumption of linearity) the obtained
results can be most useful. The practical validity
of this statement is in the focus of the research.

The work described in this paper aims at build-
ing a proper basic framework for examining the
possibilities of controlled finite Markov chains in
nonlinear process control. In particular, the field
of process engineering is in our main concern,
with applications characterized by: availability of
rough process models, slow sampling rates, non-
linearities that are either smooth or appear as
discontinuities, expensive experimentation (large-
scale systems running in production), and sub-
stantial on-site tuning due to uniqueness of prod-
ucts. Clearly, this type of requirements differ from
those encountered, e.g., in the field of economics
(lack of reliable models), robotics (very precise
models are available), consumer electronics (mass
production of low cost products), telecommunica-
tion (extensive use of test signals, fast sampling),
or academic toy problems (ridiculously complex
multimodal test functions).

Due to systematical errors, noise, and lack of ac-
curacy in measurements of process state variables,
among many other reasons, there is a urgent need
for extended means of learning and handling of
uncertainties. The finite Markov chains provide
straightforward means for dealing with both of
these issues.

This paper is organized as follows: The process
models are considered in section 2, control de-
sign in section 3, open and closed loop system
analysis in section 4. The MATLAB toolbox, and
an illustrative example is provided in section 5.
Discussion on aspects relevant to learning under
uncertainties, and conclusions, are given in the
final section.

2. GENERALIZED CELL MAPPING

Let the process under study be described by
the following discrete-time dynamic system and
measurement equations

x (k) = f (x (k − 1) ,u (k − 1) ,w (k − 1)) (1)
y (k) = h (x (k) ,v (k)) (2)

where f : <nx ×<nu ×<nw → <nx and h : <nx ×
<nv → <ny are nonlinear functions, wk ∈ <nw and
vk ∈ <nv are i.i.d. white noise with probability
density functions (pdf’s) pw and pv, respectively.
The initial condition is known via pX (0).

Let the state space be partitioned into a finite
number of sets called state cells, indexed by s ∈
S = {1, 2, ..., S}. The index s is determined from

s = argmin
s∈S

°°x− xrefs °°
where xrefs are reference points (e.g., cell cen-
ters). In addition, let us define a ’sink cell’,
ssink; a state is categorized into a sink cell if
mins∈S

°°x− xrefs °° > xlim. Similarly, let the con-
trol action and measurement spaces be partitioned
into cells indexed by a ∈ A = {1, 2, ..., A} and
m ∈ M = {1, 2, ...,M}, respectively, and deter-
mined using reference vectors urefa and yrefm . The
partitioning results in X = ∪Ss=1Xs, U = ∪Aa=1Ua
and Y = ∪Mm=1Ym.
The evolution of the system can now be approx-
imated as a finite state controlled Markov chain
over the cell space (however, see (Lunze, 1998)).
In simple cell mapping (SCM), one trajectory is
computed for each cell. Generalized cell mapping
(GCM) considers multiple trajectories starting
from within each cell, and can be interpreted in a
probabilistic sense as a finite Markov chain.

2.1 Evolution of states

Let the state pdf be approximated as a S × 1
cell probability vector pX (k) = [pX,s (k)] where
pX,s (k) is the cell probability mass. The evolution
of cell probability vectors is described by a Markov
chain represented by a set of linear equations

pX (k + 1) = P
a(k)pX (k)

or, equivalently, pX,s0 (k + 1) =
P
s∈S p

a
s0,spX,s (k),

where Pa is the transition probability matrix un-
der action a,Pa =

£
pas0,s

¤
, pas0,s =

R
Xs p(x (k + 1) ∈Xs0 | x (k) ∈ Xs, u (k) ∈ Ua) dx.

The likelihood of obtaining a measurement cell
m, when the system state cell is s, is given by
the likelihood matrix L, L = [lm,s](Ungarala and
Chen, 2003), lm,s =

R
Ym p(y ∈ Ym | x ∈ Xs)dy.

Let a row in the likelihood matrix be denoted as
a likelihood vector lm. Given the current likeli-
hood vector and the previous posterior probability
vector pX (k − 1), a Bayesian estimate of the cell
probability can be constructed,

pX (k) ∝ lm ⊗Pa(k)pX (k − 1) ,

where ⊗ denotes component-wise multiplication.

3. CONTROL DESIGN

Using a GCM model of the plant, an optimal
control action for each state can be solved by mini-
mizing a cost function. In both optimal (Kaelbling



et al., 1996) and predictive control (Ikonen and
Najim, 2002) the cost function is defined in a fu-
ture horizon, based on specification of immediate
costs for each state-action pair. Whereas optimal
control considers (discounted) infinite horizons
and solves the problem using dynamic program-
ming, nonlinear predictive control approaches rely
on computation of future trajectories (predic-
tions) and exhaustive search.

3.1 Optimal control

In optimal control, the control task is to find
an appropriate mapping (optimal policy or con-
trol table) π from states (x) to control actions
(u), given the immediate costs r (x (k) ,u (k)).
The infinite-horizon discounted model attempts to
minimize the geometrically discounted immediate
costs

J (x0) =
X∞

k=0
γkr (x (k) ,π (x (k)))

under initial conditions x (0) = x0. The optimal
control policy π∗ is the one that minimizes J . The
optimal cost-to-go is given by J∗ = minπ J .

Bellman’s principle of optimality states that

J∗ (x0) = min
u
[r (x0,u) + γJ∗ (f (x0,u))]

i.e., the optimal solution (value) for state x is the
sum of immediate costs r and the optimal cost-to-
go from the next state, J∗ (f (x0,u)). Application
of the Bellman equation leads to methods of
dynamic programming.

3.1.1. Value iteration In value iteration, the
optimal value function is determined by a sim-
ple iterative algorithm derived directly from the
Bellman equation. Let the immediate costs be
given in matrix R = [ra], with column vectors
ra = [ras ], and collect the values of the cost-to-
go at iteration i into a vector J∗ (i) = [J∗s (i)].
Given arbitrary initial values J∗s (0), the costs are
updated for i = 0, 1, 2, ...:

Qas (i) = r
a
s + γ

X
s0∈S

pas0,sJ
∗
s0 (i)

J∗s (i+ 1) =min
a∈A

Qas (i)

∀s, a, until the values of J∗s (i) converge. Denote
the converged values by J∗s . The optimal policy is
then obtained from

π∗s = argmin
a∈A

h
ras + γ

X
s0∈S p

a
s0,sJ

∗
s0

i
.

3.2 Predictive control

Given a system model and the associated costs,
we can easily set up a predictive control type
of a problem. In predictive control, the costs are
minimized in an open loop in a fixed horizon

J (x (k) , ...,x (k +Hp) ,u (k) , ...,u (k +Hp))

=
XHp

h=0
r (x (k + h) ,u (k + h))

under initial conditions x (k). In practice it is
useful to introduce a control horizon, where it is
assumed that the control action will remain fixed
after a given number of steps, Hc.

Often only one step is allowed and the opti-
mization problem reduces to the minimization of
J (x (k) , ...,x (k +Hp) ,u (k)). Under control ac-
tion a, the costs are given by

Ja =
XHp

h=0
[ra]T pX (k + h)

=
XHp

h=0
[ra]T [Pa]h pX (k)

where ra = [ras ] is a column vector of immediate
costs and pX (k) is current state cell pdf. In order
to solve the problem, it suffices to evaluate the
costs for all a ∈ A and select the one minimizing
the costs. The prediction horizon Hp is a useful
tuning parameter; a long prediction horizon leads
to mean level type of control.

The control policy mapping π¦ can be obtained
by solving the above problem in each state s and
tabulating the results:

π¦s = argmin
a
Ja.

3.2.1. Control horizons greater than one For
many practical cases, a good controller design
can be obtained using either the optimal control
approach, or the predictive control approach with
Hc = 1. Whereas the optimal control tends to
result in ”agressive” control actions in terms of
the plant input (even if optimal in terms of the
cost function), the predictive control approach
provides a variety of responses as a function of
the prediction horizon, Hp. With a small Hp, an
agressive control is obtained. A large Hp results
in mean level control where the closed loop shares
the open loop plant dynamics. In some cases, how-
ever, an engineer may be interested in extending
the controller design possibilities to larger control
horizons. In principle, this is straightforward to
realize in the GCM context: One simply creates
A different sequences of control actions, simulates
the system accordingly, and selects the sequence
that minimizes the cost function.

With large Hc, the search space of the exhaus-
tive search can become too large for practical



purposes, however. Luckily, in process engineering
one is commonly interested in control sequences
which fulfill rate constraints, one prefers to avoid
jiggering, etc. With some simple rules, the set of
appropriate control sequences can be reduced to
a manageable size. Notice, however, that if suffi-
cient information concerning the constraints is not
contained in the cost description (R), the optimal
control policy (table) can not be constructed off-
line. If the optimal control action is solved on-
line, one is free to select the potential control
sequencies based on any available information.

4. SYSTEM ANALYSIS

The generalized cell-to-cell mapping is a powerful
tool for analysis of nonlinear systems. In what fol-
lows, it is assumed that the system map (Markov
chain) is described by transition probabilities P.
This may correspond to the process output un-
der a fixed (open loop) control action a (P :=
Pa) or the systems closed loop behavior obtained
from the construction of transition probabilities
under u = π (x): Pπ =

£
pπs0,s

¤
, where pπs0,s =R

Xs p(x (k + 1) ∈ Xs0 | x (k) ∈ Xs, u (k) = π∗s)dx.

An useful characterization of cells is obtained by
studying the long term behavior of the Markov
chain (Najim et al., 2004). Decomposing the prob-
ability vector into recurrent cells (ir ∈ Ir) and
transient cells (it ∈ It), the Markov chain can be
written as·

pr (k + 1)
pt (k + 1)

¸
=

·
Prr Prt
0 Ptt

¸ ·
pr (k)
pt (k)

¸
The recurrent cells form communicating classes
(closed subsets), where the cells within each com-
municating class (inter)communicate with each
other, i.e., the probability of transition from one
state to the other is nonzero, and do not communi-
cate with other states. Each absorbing state only
communicates with itself. A closed communicat-
ing class constitutes a sub-Markov chain, which
can be studied separately.

A stationary probability distribution satisfies
pX = PpX and, consequently, the distribution
must be an eigenvector of P; for the distribution
to be a probability distribution, the eivenvalue
must be one. Therefore, the recurrent cells are
found by searching for the unit amplitude eigen-
values ofP; the nonzero elements of the associated
eigenvectors pX point to the recurrent cells.

Examination of the behavior of transient cells as
they enter the recurrent cells reveals the dynamics
of the nonlinear system. We have that pr (k + 1) =
Prrpr (k) + PrtP

k
ttpt (0), where PrtP

k
tt represents

the conditional probability that a solution starting
from a transient cell will pass into an recurrent

cell at time k + 1. The probability that this will
eventually happen, Pt2r, is given by

Pt2r =
X∞

k=0
PrtP

k
tt = Prt (1−Ptt)−1

Each recurrent cell belongs to a communicating
class, for absorbing cells this class consists of
a single cell. The probability of transition into
a particular communicating class is obtained by
summing (column-wise) the entries in Pt2r.

The sink cell (Hsu, 1987) is an absorbing cell that
represents the entire region outside the domain
of interest. A nonzero probability to enter the
sink cell indicates unstability of the system (given
the resolution of the model). In the experimental
section, the stationary probabilities of entering
the sink cell are examined.

High probability cells determine the basin-of-
attraction. The ’size of the basin-of-attraction’ for
each state was characterized by taking the sum
of probabilities for entering a recurrent cell (from
any transient cell, or from any recurrent cell)
and weighting based on probability of occurance
within a communicating class (i.e., multiplying
this with the stationary mapping P∞):

B = P∞

"X
i∈It

[Pt2r]j,i +
X
i∈Ir

[Prr]j,i

#

where P∞ is a mapping to stationary distribu-
tion: P∞ = limn→∞ 1

n

P
Pnrr, and [x]a,b denotes

an element of x in a’th row and b’th column.
Elements of B take values in the interval [0, S],P
i∈Ir [B]i = S.

5. SIMULATION EXAMPLE

The following control design problem set-up was
envisioned: A nonlinear state-space model of the
plant is available (a set of ordinary differential
equations, for example), and a decision on input,
state, and output variables has been made. A
controller is now seeked for, such that desired
transitions between plant output set points would
be optimal.

Let us consider a simple example of a two-tank
MIMO system (for details, see (Åkesson et al.,
2006) and references there). The objective is to
keep the temperature in the second tank (y) at
it setpoint, while keeping the levels of both tanks
within preset limits. The system is controlled by
a valve for the first tank input flow, a pump
between the two tanks, a heater in the second
tank, and a valve for the second tank output flow.
The heater (u1) is constrained to values in the
interval between 0 and 560 kW, the pump (u2)



has three operational levels {off, medium, high},
the valves are binary {on/off}.
The state space was discretized by forming a
grid quantized as {0, 1, 2, ..., 9} [m] for tank lev-
els; {17, 18, 19} and {17, 18, ..., 24} [C] for tank
temperatures, respectively. The input flow tem-
perature (disturbance) was discretized into three
values: {17, 18, 19}; and the heating action in five
values: {0, 140, ..., 560}. The immediate costs were
set based on the Euclidean norm between de-
sired and reference temperatures, kw − ysk and
deviation from nominal controls for u2, u3 and
u4 at 1 with weights 0.1, 2 and 2 respectively
(see (Åkesson et al., 2006)). For the states where
reference points exceeded either upper or lower
limits for the tank level (at 0.5m and 8.5m), an
additional large cost was added (ten times larger
than other immediate costs). A 100 times larger
cost was set for the sink cell.

The selected discretization resulted in a finite
state—action space of 7201 states and 60 actions,
including the sink cell. A GCM model was built
by evaluating the state transitions five hundered
times for each possible state-action pair (s, a).
The starting state was generated from a random
uniform distribution from within the state hy-
percube. While most of the computing time was
spent on solving the ode, the computations took a
couple of hours (PC: 3GHz Pentium 4 CPU, 1GB
RAM, MATLAB R12). Clearly this presented a
significant burden both in terms of computing
power and memory, but not excessive at all. Given
the GCM model, a predictive controller was de-
signed using Hp = 5.

Due to space restrictions, we only briefly summa-
rize the closed-loop analysis:

• The probabilities for entering the sink cell
from any other cell were zero (system was
stable).

• The basin-of-attraction was empty for pro-
jections to levels 0 or 9 (constraints on tank
levels were fulfilled)

• For set points 19◦C... 23◦C, the basin-of-
attraction almost 100% transitions to the
correct tank 2 temperature was obtained (set
point control was successful). The smaller
sizes of basins-of-attraction were explained
by the lack of means to cool the incoming
feed (for low temperatures); or by the ob-
served open-loop transitions to sink state (for
24◦C).

• In few cases (three initial states), the model
predicted transitions that could be judged
as impossible using physical arguments. The
remedy for this problem is to increase either
the sampling rate, or the number of evalua-
tions.
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Fig. 1. Closed-loop simulation. The set point tra-
jectory consists of a series of steps and ramps.
A the end of simulation, an input disturbance
affects the system.

• For a particular communicating class, or a
state in it, very precise information can be
obtained, such as the expected time of ab-
sorbtion from a particular system state. Un-
fortunately, it is not feasible to examine all
states with this much care.

Figure 1 illustrates a trajectory following simu-
lation with (a known) input disturbance. It can
be concluded that convenient tools for design and
analysis of the closed loop system were found, in-
cluding examination of stability and steady state
performance.

6. DISCUSSION AND CONCLUSIONS

The GCM transition matrices Pa can be learned
from data (measured or simulated), by counting
the number of observed transitions. For one up-
date, all that is required are two successive state
vectors and a control: x (k) ,u (k) ,x (k + 1), for
a given sampling time Ts. For likelihood matrix
L, a similar procedure can be applied. Therefore,
all past or on-line recorded data-triplets can be
efficiently used.

Update of a large map may require an excessive
number of samples, however, and parts of the
model space may never be visited in real life,
due to constraints in time and plant operation.
This rises up the question of efficient and practical
identification procedures. A huge variety of discus-
sions on this problem, and different procedures for
solving it, have been published. Typically, depend-
ing on the problem set up, local updating proce-
dures can be found and efficiently implemented.
These are, however, always based on some prior
knowledge on the plant characteristics, such as
smoothness or other structural information on f .
Accompagned with careful design of experiments



(statistics, interpolation / approximation tech-
niques, focusing on control-relevant properties),
the number of experiments required on real plant
can be greatly reduced. A majority of the recent
MDP related literature has focused on these is-
sues. Results on findings of efficient methods have
been reported. It is the authors opinion, however,
that these methods introduce a substantial com-
plexity (e.g., multilevel learning algorithms) and
additional uncertainties (e.g., interpolation and
smoothing) into the overall system.

In real applications, the system state may not be
measurable, or the measurement may be severely
corrupted by noise. If a system model (Pa’s,
L) is available, a state estimator can be con-
structed. In some cases it can be more convenient
to describe the system states based on delayed
input—output measurements, leading to CMC—
ARX models (Kárný et al., 1998), thereby skip-
ping the problem of state estimation, as if sys-
tem inputs and outputs are measurable the states
of this type of models are always measurable.
However, the state may not be minimal, and if
the measurements are noisy a state estimator (an
observer or a filter) may provide useful.

6.1 Future directions

In our preliminary work we have focused on using
Markov chains and MDP as a tool, the use of
which is to be examined bearing in mind the
resolution of the problem set up (discretization
into a finite state space). Continuing in the same
direction, the problem of identication is then re-
lated to keeping the original model up-to-date (the
ode, for example), or —at least— approximating
the original model using function approximation
techniques, rather than looking for clever tricks to
make counting feasible in the finite state space,
doomed to be huge. If doable, the benefits are
clear: physical interpretation of estimated param-
eters. In many process engineering problems, this
may turn out to be more fruitful than pure ma-
chine learning approaches.

Instead, the problem of uncertainty in measure-
ments can potentially be handled in a very elegant
and efficient fashion using finite Markov chains.
Given the finite state probabilistic description
of the plant, it is straightforward to construct
cost functions taking into account the uncertainty
in the predictions (other than discounted condi-
tional expectations). Under the predictive control
paradigm, also uncertainties in current state can
be taken into account in plant predictions (i.e.,
there’s no need to restrict to ML estimates, etc.).
Completing a literature review on these topics is
a major direction in our future research.
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