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Abstract
The robust and accurate identification of different

forms of manure stands as a pivotal imperative within
the domain of agriculture. Near-infrared (NIR) Spec-
troscopy has emerged as an expeditious, efficient, non-
destructive, and reliable approach to addressing this
challenging task. NIR spectroscopy has the potential to
serve as a valuable tool for the classification and iden-
tification of manure varieties. In order to enhance fer-
tilizer identification performance, this study proposes a
novel model called NIRsViT which classifies fertilizers
by employing a combination of deep learning Vision
Transformer model on NIR spectral data. The intro-
duced model’s performance outperforms existing deep
learning models, with an F1-Score of 86.42% and an ac-
curacy rate of 95.19%. Additionally, the model’s clas-
sification performance has been significantly improved
by proposed imbalanced data processing approaches,
Focal Loss, and Upsample, with an F1-Score up to
93.91%, the improved F1-score proved that imbalanced
data was considerably solved. The proposed method is
a promising approach to handling imbalanced NIR spec-
tral data and acts as a pioneering benchmark for subse-
quent models in manure identification through NIR spec-
troscopy. Future research gears toward improving the
NIRsViT model’s temporal efficiency and computational
load, while also testing the introduced imbalanced data
handling approach for efficiency comparison across var-
ious models and larger datasets.
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1 Introduction
In current agricultural practices, the provision of

essential nutrients to crops is predominantly facilitated
through the utilization of fertilizers. The agricultural
sector relies on fertilizers to harvest crop yields by
furnishing crops with the requisite nutrients for optimal
growth and development. Depending on the growth
conditions, each type of crop might require different
types of fertilizer, therefore, accurate determination
of the most suitable fertilizer for a given crop is of
paramount importance. Notably, this endeavor holds a
formidable challenge, as it necessitates the expeditious
categorization and identification of agricultural fertil-
izers based on their chemical composition, which, in
traditional approaches, entails the usage of specialized
measurement devices.

However, fertilizer image data is occasionally scarce,
and different types of fertilizers sometimes have similar
exterior forms, making image-based manure classi-
fication a significant difficulty. Image-based manure
categorization is one of the most significant obstacles in
solving the fine-grained classification problem. Notably,
this task is considerably more intricate in comparison to
the classification of distinct categories of entities, such
as dogs and cats [Wei et al., 2021]. Fertilizer forms share
a plethora of physical characteristics, which frequently
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pose a notable struggle to the accurate recognition and
classification of fertilizers via image processing algo-
rithms. Specifically, conventional image classification
models often require an enormous quantity of data
and an extensive training period to achieve satisfactory
results.

Therefore, Near-infrared (NIRS) spectroscopy has
emerged as an effective technique for qualitative
analysis of organic substances, especially in food
analysis. Compared to the majority of other chemical
techniques, NIR technology is swift, reliable, secure,
and non-destructive. The process includes recording
the molecular vibrations of all molecules having C-H,
N-H, O-H, and S-H groups by absorbing near-infrared
light (wavelengths ranging from 780nm to 2500nm) at
various wavelengths in the sample [Zhang et al., 2022].
Consequently, every resultant spectrum encapsulates the
unique characteristics of the corresponding sample. A
substantial outcome has been demonstrated in recent
research [Zhang et al., 2022] which employs a conven-
tional machine learning model to classify substances
using NIR spectra. The Multi-elemental discriminant
analysis technique was used to categorize sesame seeds
in the research conducted by Young Hee Choi et al.
[Choi et al., 2016] with an accuracy of up to 89.4%.
SVM and decision tree methods were also utilized in the
work of Sylvio Barbon Jr. et al. [Barbon Jr et al., 2018]
for chicken flesh identification with a precision score of
77.2%.

Moreover, near-infrared spectroscopy (NIR) has been
recently used for classification by combining with
analytical methods. The performance of deep learning
models in NIR spectral analysis normally outperforms
early studies on traditional machine learning techniques,
such as Principal Component Analysis (PCA), Linear
Discriminant Analysis (LDA), K-Nearest Neighbours
(KNN), Random Forest, and Support Vector Machine
(SVM) [Tan et al., 2022; Huang et al., 2023; Li et al.,
2022; Li et al., 2023; Yang et al., 2021]. Deep learning
models incorporating NIR spectra have been applied in
numerous studies due to this field’s exponential growth,
and these models consistently yield classification per-
formance of up to 97% precision. Numerous studies
have utilized NIR spectra to analyze fertiliser data,
as evidenced by recent publications [Tan et al., 2022;
Bedin et al., 2021].

Nevertheless, unusual fertiliser types are often seen in
practice, leading to data imbalance in classification – an
issue that is also commonly encountered in NIR spectral
datasets. As a result, models might ignore classes with
fewer instances and concentrate primarily on those with
more samples. The dataset in Thierry et al.’s research
[Hien et al., 2024] on the classification problem using
six distinct types of fertilisers underscores this data im-

balance issue, with a disproportionately larger quantity
of data samples for cattle and poultry manure than for
the other fertiliser categories. Although some studies
[Morvan et al., 2021; Hong et al., 2019] have mentioned
data imbalance remedies; nonetheless, these studies
remain facing difficulties in performance, computational
complexity, and overfitting.
In recent studies, prominent models such as MLP, CNN,
ResNet, and MobileNet have been frequently employed
on NIR spectral data for classification tasks [Zhang
et al., 2022]. However, emerging evidence indicates that
deep learning models based on the recently proposed
Vision Transformer architecture by Alexey Dosovitskiy
et al. are believed to represent the most sophisticated
models for computer vision or image processing tasks
[Wang et al., 2020]. With the goal of better understand-
ing the characteristics of NIR data, this study proposes
a novel deep learning architecture named NIRsViT,
which can be considered as a variation of the Vision
Transformers model. Furthermore, the Focal Loss has
been used as a Loss function [Khan et al., 2022], which
has been confirmed to operate effectively in dealing
with unbalanced data. Furthermore, this study consisted
of contemplated examining the data balancing method
known as Upsample, which involves doubling the data
of the classes with fewer samples. The experimental
findings of this research point out the ways the proposed
NIRsViT model, when coupled with the two Upsample
and Focal Loss approaches, substantially improves
classification efficiency.

This research has two primary novel contributions:

1. It introduces a new deep learning model called
NIRsViT for identifying six different fertiliser types
based on NIR spectroscopy.

2. It proposes two novel methods, Upsample and Fo-
cal Loss, to rectify the data imbalance issue in NIR
spectral data.

The introduced NIRsViT model yields promising
results with a 95.19% accuracy rate and an F1-Score
of 86.42. Notably, the proposed model performs
significantly better when the two proposed methods
for handling data imbalance are implemented. While
Focal Loss contributes to a 1-2% improvement in
F1-Score, a considerable increase in F1-Score, rising
to 93.91% is gained by using the Upsample method.
The result highlights the unique efficacy of applying the
two proposed techniques to address the data imbalance
issue, outperforming earlier classification systems.

2 Related Work
2.1 Machine Learning Applications with NIR Spec-

troscopy
Numerous researchers have recently developed dif-

ferent chemometric methods for NIR spectroscopy to
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address the intricacies of NIR spectroscopy-based anal-
ysis [Van Huy L, 2023]. Alongside these conventional
techniques, the integration of machine learning models
within NIR spectroscopy is progressively gaining
traction due to their superior efficiency and reliability.
The multi-elemental discriminant analysis machine
learning model was used in a recent study by [Choi
et al., 2016] to categorise sesame seeds. Regardless,
because of the insufficient data on sesame seeds in the
data classes, the accuracy of this approach was found
to be a modest 89.4%. In another study, [Barbon Jr
et al., 2018] classified chicken flesh using traditional
machine learning methods such as SVM and Decision
Tree. The most effective model, however, only achieved
an accuracy of 77.2%, indicating the imperative need for
considerable improvement before real-world application
becomes feasible. Furthermore, a shortage of data was
a challenge experienced by many other researchers
[Lin et al., 2017; Mazivila et al., 2020], which intruded
on the model’s reliability in real-world applications.
This occurs because datasets of inadequate diversity
engender an incomplete reflection of reality.
Deep learning techniques, as demonstrated by several
recent studies [Huang et al., 2023; Yang et al., 2021;
Vaswani et al., 2017; Roggo et al., 2007], have out-
performed conventional machine learning models. In
particular, [Li et al., 2022] proposed a 1-D CNN model
for NIR data analysis that outperformed traditional
machine learning models such as PLS regression and
KSV regression. In [Yang et al., 2021] study, NIR data
collected from tea was transformed into images and then
applied to CNN, ResNet, and MobileNet. The outcomes
illustrated a substantial improvement in performance
over traditional machine learning models when applying
deep learning to images (pseudo-image). Furthermore,
in their pioneering work, [Li et al., 2023] leveraged
multiple residual connections to formulate an innovative
architecture known as SCNet.
Based on the architecture of the Vision Transformer
model, this study introduces a new model named
NIRsViT, while concurrently presenting a pseudo-image
generated from NIR spectrum data as the input for the
model.

2.2 Handling Imbalanced NIR Data
The disparity between classes in a dataset is one

of the most pervasive issues in practice, a challenge
that also infiltrates the domain of NIR spectral data.
Consequently, researchers have sought solutions to
address this predicament. In the work of [Hien et al.,
2024], machine learning models are re-used to identify
anomalous data and concluded that the OC-SVM
(One-class SVM) machine learning model is the most
effective at dealing with the imbalance in NIR data
classification. [Hong et al., 2019] Research is also
noteworthy since it employed machine learning models
to categorise, utilising a more balanced dataset created

by applying the Variational Autoencoder (VAE) network
to generate new data [Wong and Yeh, 2024]. However, a
substantial quantity of initial data is required to be able
to generate data based on ordinary generative models
[Zhang et al., 2022]. The object detection problem
from [Khan et al., 2022] served as the inspiration for
this study to modify Loss Function with Focal Loss
to the near-infrared (NIR) spectral classification. The
performance of this modification has been outstanding,
especially on unbalanced datasets where specific classes
have fewer samples [Wen and Furtat, 2023]. Addition-
ally, the Upsample technique is implemented, which is
a widely used method for dealing with the problem of
data imbalance. By cloning samples repeatedly, this
strategy attempts to increase the number of samples of
minority classes.

3 Materials and Methods
3.1 Dataset descriptions

The dataset in this research was collected by Thierry
Morvan and colleagues in their comprehensive study
[Morvan et al., 2021]. This dataset contains data on
the near-infrared spectra and chemical makeup of 490
samples of organic fertiliser taken from cattle on 270
farms over two collection campaigns in Brittany, France
in 2018 and 2019. The dataset contains the following
fertiliser groups: cattle manure, poultry manure, pig ma-
nure, poultry droppings, compost, and others. After col-
lecting from the farms, the fertiliser samples underwent
a thorough analysis applying analytical techniques ap-
proved by the French Standards Organisation (AFNOR)
in order to ascertain the concentrations of critical ele-
ments such as organic matter, dry matter, N, P, K, Ca,
and Mg. The samples were then scanned by a Q-interline
AgriQuant B8 near-infrared spectrometer, each sample
was scanned three times and the spectral data from 852-
2502 nm was saved along with the results of the chem-
ical analysis. Table 1 provides an overview of statistics
of the dataset’s composition.
The quantity of cattle manure is significantly greater than
that of the other types of manure, so the imbalanced data
do exist in this dataset. The imbalanced proportion un-
equivocally demonstrates the imbalance in this dataset,
as validated by Wang et al’s research [Hong et al., 2019]

3.2 Dataset Preprocessing
The following process is used to smooth and decrease

noise in the spectral data:

Every spectral range in the spectral data undergoes
an application of the Savitzky-Golay filter with filter
parameters including three polynomial orders and a
window size of 21. Through this method, the spec-
tral data is smoothed down, noise is eliminated, con-
tinuity is maintained, and it becomes more appropri-
ate for deep learning model training.
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Table 1. Sample Size Statistics of fertiliser Groups

Product Cattle manure Pig manure Poultry manure Poultry droppings Compost Other

Sample 276 18 144 27 16 9

Figure 1. Visualization of NIRS Data of Different Manure Groups

Figure 2. Convolutional Block and Residual Block Architecture

The Standard Normal Variable (SNV) is used for
data normalization to bring the dataset to a mean
of 0 and a standard deviation of 1 after the spec-

tral data has been smoothed. When it comes to NIR
spectral data processing, this is one of the most used
normalization techniques.

The combination of the two preprocessing methods,
Savitzky-Golay smoothing and Standard Normal Variate
(SNV), emerges as the preprocessing method that im-
proves the model most effectively [Zhang et al., 2022].

3.3 The Proposed Model NIRsViT
Convert a one-dimensional spectrum into a two-

dimensional image:
Since NIR data is sequence-based, the NIR spectrum
data is reshaped into a 22x22x2 image format, shown in
Figure 3, to transform into a pseudo-image format, mak-
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Table 2. Architecture of MLP, CNN, and ResNet Models

Model Architecture

MLP This model consists of fully connected layers with ReLU activation. The first three layers have 512
neurons, while the fourth layer has 256 neurons, and the fifth layer has 128 neurons. The output is a
layer of 6 neurons and softmax activation.

CNN This model includes three consecutive convolutional blocks: 16 kernels 3x3 + BN + ReLU, 32 ker-
nels 3x3 + BN + ReLU, and 64 kernels 3x3 + BN + ReLU. The fourth layer is a global average
pooling. The output is a layer of 6 neurons and softmax activation. The architecture of the convolu-
tional block is described in Figure 2 A.

ResNet This model comprises three consecutive residual blocks: 16 kernels 3x3 + BN + ReLU + Skip
connection (kernel 1x1 + BN), 32 kernels 3x3 + BN + ReLU + Skip connection (kernel 1x1 + BN),
64 kernels 3x3 + BN + ReLU + Skip connection (kernel 1x1 + BN). The fourth layer is a global
average pooling. The output is a layer with 6 neurons with softmax activation. The architecture of
the residual block is depicted in Figure 2 B.

MLP: Multilayer Perceptron, CNN: Convolutional Neural Network, ResNet: Residual Network, BN: Batch
Normalization, ReLU: ReLU activation

Figure 4. Convolutional Neural Network Architecture

ing it compatible with the Vision Transformer model.
The NIR spectrum is expected to be a 968-dimensional
vector. We reshape this vector into a tensor with
dimensions 22x22x2, resembling an image spectrum.
The architecture of NIRsViT consists of three main
components: Convolutional Neural Network, Trans-
former Encoder, and Classifier Head.

Figure 3. NIRsViT Architecture

The convolutional Neural Network layer should be
utilized in place of the original Vision Transformer
model’s Linear Projection of the flattened patch layer.
Employing a dense layer over a flattened patch for image
data might not be as effective in extracting features as
the Convolutional Neural Network layer (NIR spectrum
pseudo-image).

Convolutional Neural Network:

Initially, the pseudo-image data is split up into
”patches”. Due to the pseudo-image being only 22 × 22
× 2, it is partitioned into 4 ”patches”, each measuring
11 × 11 × 2, as shown in Figure 3. Following that, as
illustrated in Figure 4, each ”patch” is sent to the CNN
layer to extract the Patch Embeddings with the shape
of 16x64. The ”red matrix” in Figure 4 is called as
Patch Embedding. These Patch Embeddings are then
furnished to the Transformer Encoder. Furthermore,
the suggested model in this section refrains from using
Position Embedding, contrary to the original Vision
Transformer architecture. Because using Position
Embedding throughout the experiment process not only
increases computing cost but also does not significantly
improve accuracy.

Transformer Encoder:

Figure 5. Left: Internal architecture of Transformer Encoder Visual-
ization, Right: Input and Output of Transformer Encoder Visualization
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The original Transformer Encoder architecture which
was first introduced by [Zhai et al., 2022] is modified
with several changes to adapt for the purpose of clas-
sifying fertilizers through experimental study rather
than deploying a multitude of Transformer Encoder
layers, a solitary Transformer Encoder layer is em-
ployed. There are two sub-layers in the Transformer
Encoder layer [Van Hieu et al., 2023]. One multi-head
self-attention layer (with four attention heads) and one
normalization layer make up the first sub-layer, while
one fully-connected network layer combined with one
normalization layer makes up the second [Han et al.,
2024]. Furthermore, as can be seen in Figure 5 (Left),
a skip connection is applied to every sub-layer. Figure
5 (Right) displays the description of the Transformer
Encoder’s input and output sizes. In the original Vision
Transformer, the authors employ a ’class token’ for
classification, which might lead to an abundance of
other tokens. In our study, we recognize that adding a
“class token” could result in an increased computational
load. Therefore, we opted not to use a ’class token’ in
this investigation.

Classifier Head:

Figure 6. Input and Output of Classifier Head Layer Visualization

A variety of techniques in the Classifier Head layer
could be employed depending on the specific classifica-
tion objective and the dataset’s properties. For example,
[Dovbnych and Plechawska-Wójcik, 2021] used the
Vision Transformer model for classifying forest species
and implemented a K-Nearest Neighbours (KNN)
model as the classifier that adjusted for the continuous
variance of the database’s forest species data. Therefore,
a single fully connected neural network is employed
in this study. This might be attributed to not only the
fully connected layer’s ability for non-linear separation
and its outstanding learning performance on a huge
dataset but also its straightforward integration with the
Transformer Encoder layer.

The 2D Feature Embedding with a size of 64x64 is
extracted by the Transformer Encoder layer. The mean
value is then computed on axis = 1, creating a vector
with 64 dimensions, shown in Figure 6. After that, the
Classifier Head acquires this feature vector, illustrated in
Figure 3. The output from the fully connected Classifier
Head network layer is represented by the following
expression:

FC(x) = softmax(Wx+ b)

Finally, the output of the Classifier Head is a feature
vector with 6 dimensions, corresponding to the 6 fertil-
izer classes.

3.4 Techniques for Overcoming Data Imbalance in
the NIRs Spectrum

In the context of a classification task, disparate
distribution of training samples among classes can
hinder effective learning. This inefficacy arises as the
learning process may skip certain classes with limited
data samples, and disproportionately focus on learning
from classes with more data samples. To address this
challenge, this study incorporates two methods to rectify
imbalanced data: Upsampling and training the model
with the Focal Loss function.

Focal Loss: The loss function implemented in
classification tasks, especially in binary classification,
commonly is Cross Entropy Loss, which is represented
by the following expression:

CE(pt) = − log(pt)

With:

pt =

{
p if y = 1

1− p otherwise

While y = {±1}, which describes class 1 and -1,
p ∈ [0, 1] , is the probability of the model’s prediction
for class y = 1. The learning bias that arises from an
imbalance in the two-class data is a limitation of the
Cross-Entropy Loss function. To attempt to address this
problem, a Focal Loss was constructed based on the
Binary Entropy Loss formula:

FL(pt) = −αt(1− pt)
γ log(pt)

Focal Loss is built by adding a coefficient of (1− pt)
γ

, this coefficient helps to reduce the weight of the
majority classes based on the parameter γ. As a result,
the model can focus more on the minority classes,
thereby significantly improving the accuracy compared
to Cross-Entropy Loss. The parameter αt adjusts the
significance of each class in the Focal Loss function.

Upsample: By approximating the larger classes
through numerous replications of the small class data
samples, the Upsample approach mitigates the challenge
of unbalanced data. Compared to the data balancing ap-
proach, which generates data as in the work by [Hong
et al., 2019], this technique rectifies data imbalance
without imposing a great deal of time or computing re-
sources. Moreover, with the goal of preventing overfit-
ting, the Upsample approach is only applied to the train-
ing set.
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4 Results and Discussion
4.1 Implementation Specifications

Hardware: Within the scope of this study, model
training and testing are implemented on CPU Intel Core
i5 Coffee Lake – 9300H, GPU Nvidia Geforce GTX
1650 4GB, and RAM 20GB DDR4.

Framework & Environment: All of the source code
is written in Python because of its versatility and exten-
sive user community. The models were built using the
Pytorch framework on the Windows operating system.

Training Strategy: The models were trained with the
same number of epochs = 500. The learning rate was
fixed at 0.0001 during training to stabilize the learning
process and prevent the learning rate from fluctuating too
much during training. The Adam optimizer is employed
during training. 2 loss functions, Cross-Entropy Loss
and Focal Loss, are utilized for the MLP, CNN, ResNet,
and NIRsViT models for the purpose of comparing the
performance between the models.

Evaluation Stategy: Traditional machine learning al-
gorithms, including Support Vector Machines (SVM)
with linear, polynomial (poly), and radial basis func-
tion (RBF) kernels, K-means clustering, Random For-
est, XGBoost, and LightGBM, were utilized to bench-
mark the proposed NIRsViT model. Additionally, deep
learning architectures such as Multi-Layer Perceptrons
(MLP), Convolutional Neural Networks (CNN), and
ResNet were employed to further evaluate model perfor-
mance. To ensure an objective evaluation of classifica-
tion outcomes, a K-fold cross-validation [Wong and Yeh,
2019] approach with k = 5 was implemented. Addition-
ally, the GridSearchCV method [Jiménez et al., 2008] is
used to fine-tune the parameters of the machine learn-
ing models, with the details of the tuned parameters de-
scribed in Table 3.

4.2 Metrics and Evaluation
Metrics: In this study, Accuracy, Precision, and Re-

call were used as metrics to evaluate the performance of
the models. Accuracy determines the ratio between the
number of cases predicted correctly and the total num-
ber of cases. Accuracy is calculated using the following
formula:

Accuracy =
Number of correct predictions
Total number of predictions

Precision and Recall are used to assess the efficacy of
the model’s classification quality in classification issues
when the class data sets differ considerably. The total
number of true positive instances (TP), total number of
false cases of negative (FN), and total number of false
positive cases (FP) is how a class is defined as positive.
The following formulae are used to determine Precision
and Recall:

Precision =
TP

TP + FP
,Recall =

TP

TP + FN
F1-Score is a composite metric derived from Precision

and Recall to provide a comprehensive measure of

classification performance. Since F1-Score combines
both accuracy and recall into a single score, it is useful
when considering both of these aspects, precluding the
prioritization of one at the expense of the other without
compromising overall performance. A high F1-Score
indicates that the model is able to balance accuracy and
recall well. F1-Score is calculated using the following
formula:

F1-Score =
2*Precision*Recall
Precision + Recall

Evaluation:
The results in the Table 4 highlight the effectiveness
of combining the NIRsViT model with the Focal Loss
and Upsampling method to address class imbalance
in NIR spectral classification tasks. The NIRsViT
model demonstrates superior performance compared to
both traditional machine learning and other deep learn-
ing methods across all metrics. Among deep learn-
ing models using the Cross Entropy Loss function,
NIRsViT achieves the highest Accuracy (95.19%), Pre-
cision (89.53%), and F1-Score (86.42%). Compared
to traditional machine learning models, its Recall and
F1-Score outperform even the best-performing model
(LightGBM with an F1-Score of 76.06%). This high-
lights NIRsViT’s capacity for effective feature represen-
tation and global modeling.

The Upsample method enhances performance across
all evaluated models, particularly for imbalanced
datasets. Traditional machine learning models benefit
significantly, with LightGBM showing an Accuracy in-
crease from 78.57% to 79.13% and an F1-Score rise
from 76.06% to 81.18%. For deep learning models, the
improvement is even more pronounced. NIRsViT com-
bined with Upsample achieves the highest overall perfor-
mance: Accuracy (98.10%), Precision (96.78%), Recall
(91.21%), and F1-Score (93.91%). This underscores Up-
sample’s effectiveness in mitigating data imbalance and
boosting model robustness.

The Focal Loss method proves effective in prioritiz-
ing hard-to-classify samples, significantly boosting Pre-
cision across all deep learning models. For instance,
NIRsViT + Focal Loss achieves a Precision of 92.61%,
outperforming its Cross Entropy counterpart (89.53%).
However, this gain in Precision comes at the expense
of Recall, which decreases slightly due to overemphasis
on difficult samples. Despite this trade-off, NIRsViT +
Focal Loss achieves a competitive F1-Score of 87.96%,
demonstrating its suitability for scenarios prioritizing
high Precision.

Although models get high accuracy, these models
correctly predict the majority class, such as cattle
manure or poultry manure. As observed in Table 5,
the models fail to accurately predict the minority class,
including pig manure, compost, poultry droppings, and
others. Therefore, our imbalanced data handling method
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Table 3. Ranges of hyperparameters used in tuning of best results for various machine learning technique

Algorithm Parameters Minimum Maximum Optimal

SVR (Linear) cost (C) 9.77× 10−4 32 0.01

SVR (Polynomial) cost (C) 9.77× 10−4 32 0.01

degree 1 5 4

SVR (RBF) cost (C) 9.77× 10−4 32 0.01

rbf sigma (sigma) 10−10 0.1 0.05

KMeans None None None None

Random Forest tree depth 1 15 12

n trees 1 2000 1850

min rows 1 40 32

XGBoost tree depth 1 15 12

n trees 1 2000 1800

learn rate (eta) 0.001 0.4 0.05

early stop 3 20 5

LightGBM tree depth 1 15 12

n trees 1 2000 1800

learn rate (eta) 0.001 0.4 0.05

early stop 3 20 5

can assist the model in prioritizing the minority class
and making accurate predictions for these instances.

4.3 Discussion
The number of samples in this dataset remains suitable

for deep learning models, as confirmed by the experi-
mental research presented in Yang et al’s research [Yang
et al., 2021]. The size of the pseudo-image in NIRS is
relatively small, and the NIRsViT model has been cus-
tomized to be compatible with NIRS data, ensuring that
the training process is efficient without imposing a heavy
computational load. Additionally, our proposed model’s
training and testing were conducted on a laptop equipped
with an Intel Core i5 Coffee Lake – 9300H CPU, Nvidia
GeForce GTX 1650 4GB GPU, and 20GB DDR4 RAM.
Spectroscopists can effortlessly implement our proposed
model on their computing resources, even with limita-
tions.

Focal loss increases the computational load, leading
to longer training times. In contrast, Upsample method
doesn’t substantially increase the training process, par-
ticularly when applied solely to the training data, pre-
venting overfitting. Nonetheless, the Upsample method
necessitates manual selection of the upsample frequency
for minority classes. On the other hand, focal loss au-
tomatically adjusts the weights to reduce emphasis on
majority classes and prioritizing minority classes. If

you have the best hardware for training, we recommend
using the focal loss method. Conversely, if you have
limited hardware, we suggest employing the upsample
method.

It can be seen that Focal Loss and Upsample con-
sistently yield commendable performance when involv-
ing the categorization of unbalanced data, as demon-
strated by several prior research. For an unbalanced
dataset, it is observed that Focal Loss performs better
than Cross-Entropy Loss in terms of performance im-
provement. When addressing data imbalance effectively
and directly by balancing the number of samples in each
class, the upsample strategy outperforms Focal Loss in
terms of enhancing the performance of deep learning
models. The proposed NIRsViT model results in a con-
siderable increase in F1-Score of 7.49. Moreover, when
applied to NIR data, models trained on unbalanced data
have demonstrated their actual performance.

5 Conclusion
In addressing the challenge of unbalanced data in NIRs

data classification tasks, this study proposes the novel
NIRsViT model, leveraging the Vision Transformers ar-
chitecture along with two data upsampling techniques
and the incorporation of focal loss. Performance eval-
uation of NIRsViT against other models, utilizing the
unbalanced fertilizer NIRS dataset, is conducted. The
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Table 4. Classification Results of Different type of Method using K-fold Cross Validation

Method Accuracy Precision Recall F1-Score

Machine Learning Method

SVM (linear) 70.55 66.37 70.55 68.40

SVM (poly) 65.31 58.84 65.31 61.91

SVM (rbf) 56.12 31.49 56.12 40.35

KMeans 39.80 59.52 39.8 47.70

Random Forest 75.51 68.11 75.51 71.62

XGBoost 72.45 66.35 72.45 69.27

LightGBM 78.57 73.71 78.57 76.06

Machine Learning Method using Upsample Method

SVM (linear) 71.05 71.74 74.72 73.20

SVM (poly) 65.77 63.60 69.17 66.27

SVM (rbf) 56.52 34.04 59.44 43.29

KMeans 40.08 64.34 42.15 50.93

Random Forest 76.05 73.62 79.97 76.67

XGBoost 72.97 71.72 76.73 74.14

LightGBM 79.13 79.24 83.21 81.18

Deep Learning Method using Cross Entropy Loss Function

MLP 93.57 84.83 82.03 83.41

CNN 94.95 84.99 81.98 83.46

ResNet 95.08 87.00 83.74 85.34

NIRsViT 95.19 89.53 83.52 86.42

Deep Learning Method using Focal Loss Function

MLP + Focal Loss 94.42 88.67 84.47 86.52

CNN + Focal Loss 95.97 88.35 85.72 87.01

ResNet + Focal Loss 96.55 90.00 81.50 85.52

NIRsViT + Focal Loss 97.41 92.61 83.75 87.96

Deep Learning Method using Upsample Method

MLP + Upsample 95.96 91.43 86.73 89.01

CNN + Upsample 92.88 88.07 89.99 89.01

ResNet + Upsample 97.67 96.26 85.42 90.51

NIRsViT + Upsample 98.10 96.78 91.21 93.91

F1-Score metric is employed for an equitable and unbi-
ased assessment of the proposed approach.
The dual application of Focal Loss during training
and Upsample for sample generating significantly con-
tributes to the improved classification performance on
imbalanced data. Experimental results, particularly the
enhancement in the F1-Score index, affirm the effective-

ness of the proposed NIRsViT model in learning from
imbalanced data. Research outcomes indicate that the
introduced model surpasses the effectiveness of current
deep learning models, achieving an impressive F1-Score
of 86.42% and an accuracy rate of 95.19%. More-
over, the model’s classification performance obtains a
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Table 5. This table describes 4 typical samples with true labels and compares the predictions of models using the proposed method with those
without the proposed method

Method Sample 1 (Pig
manure)

Sample 2 (Com-
pose)

Sample 3 (Poultry
droppings)

Sample 4
(Other)

MLP Cattle manure Cattle manure Cattle manure Cattle manure

CNN Cattle manure Cattle manure Cattle manure Cattle manure

ResNet Cattle manure Poultry manure Cattle manure Cattle manure

NIRsViT Poultry manure Cattle manure Cattle manure Poultry ma-
nure

MLP + Focal Loss Cattle manure Compose Poultry droppings Other

CNN + Focal Loss Poultry manure Compose Poultry droppings Compose

ResNet + Focal Loss Pig manure Cattle manure Poultry droppings Other

NIRsViT + Focal
Loss

Pig manure Compose Poultry droppings Pig manure

MLP + Upsample Pig manure Other Poultry droppings Other

CNN + Upsample Poultry manure Compose Poultry droppings Compose

ResNet + Upsample Pig manure Cattle manure Other Other

NIRsViT + Upsam-
ple

Pig manure Compose Poultry droppings Other

substantial enhancement through innovative imbalanced
data processing techniques, Focal Loss and Upsample,
resulting in an outstanding F1-Score of 93.91%. This
proposed method acts as a promising paradigm in ad-
dressing imbalanced NIR spectral data, serving as a
novel benchmark for future models in the field of ma-
nure identification using NIR spectroscopy. Future re-
search endeavours will focus on further enhancements of
the proposed NIRsViT model in terms of temporal effi-
ciency and computational load. The introduced approach
for handling imbalanced data will be tested to compare
and evaluate their efficiency across different models and
larger datasets.
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