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Abstract— The problem of chaos control in the nonlinear
Bloch equations is considerd based on a new control technique.
The new control technique combines a recursive approach
and active control mechanism to design control functions that
suppresses chaotic behaviours in nonlinear Bloch equations.
The effeciency of the proposed Recursive Active Control (RAC)
is demonstrated with numerical simulations.

I. INTRODUCTION

Many physical systems can exhibit chaotic dynamics under
certain conditions. Chaotic behaviours could be beneficial
feature in some cases, however, it is undesirable in many
engineering and other physical applications; and therefore
it is often desired that chaos should be controlled, so as to
improve the system performance. Thus, it is of considerable
interest and potential utility, to devise control techniques
capable of forcing a system to maintain a desired dynamical
behaviour (the ”goal” or ”target”) even when intrisically
chaotic. The control of chaos and bifurcation is concerned
with using some designed control input(s) to modify the
characteristics of a parameterized nonlinear system. The
control can be static or dynamic feedback control, or open-
loop control. In most cases, the goal could be the stabilization
and reduction of the amplitude of bifurcation orbital solu-
tions, optimization of a performance index near bifurcation,
reshapening of the bifurcation diagram or a combination of
these [1], [2], [3].

For almost two decades, there has been intense re-
search activities devoted to the design of effective con-
trol techniques. A large number of the proposed methods
are based on the Ott, Grebogi and Yorke (OGY) closed-
loop feedback method [4] and the Pyragas time-delayed
auto-synchronization (TDAS) method [5]. In the recent
times, numerous linear and nonlinear control methods have
emerged. In particular, recursive backstepping nonlinear con-
trol scheme has been employed recently for controlling,
tracking and synchronizing chaotic systems [6-12]. Recursive
backstepping is a systematic design approach and consists in
a recursive procedure that skillfully interlaces the choice of
a Lyapunov function with the control.

In another development, Bai and Longrenn proposed an
active control method for chaos synchronization [13]. The
active control scheme has in the last one decade received
considerable attention due to its simplicity and has been
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widely accepted as an effecient technique for synchroniza-
tion of identical and non-identical chaotic systems (See for
example Refs.[14-23] and refs. therein). Very recently, we
reported the control of directed transports arising from co-
existing attractors in ratchet motion using the active control
mechanism [23].

It is known that chaos synchronization is closely related
to observer problem in control theory [24]. Hence, it would
be significant to develop a chaos control method for the
active control scheme. To address this issue, we proposed
very recently [25], a recursive active control (RAC) for
controlling chaotic systems. In this paper, we extend our
study on RAC, by setting up a recursive active control (RAC)
scheme for controlling chaotic motion in the nonlinear Bloch
equations (NBE). The method combines recursive approach
with active control technique to design control functions that
can suppress the chaotic behaviour in NBE.

II. THE MODEL

Motivated by the need to interpret various anomalies that
had been observed in nuclear magnetic resonance (NMR)
experiments, in terms of chaos theory, Abergel [26], recently
examined the linear set of equations originally proposed by
Bloch to describe the dynamics of an essemble of spins with
minimal coupling. The model incorporates certain nonlinear
effects arising from radiation damping based on feedback
and consists of the three nonlinear modified Bloch equations
(NBE) given in dimensionless units as
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where the dots denotes time derivatives, Æ, �, and � are
the system parameters; and �� and �� are longitudinal time
and transverse relaxation time respectively. The dynamics of
system (1) has been extensively studied in Ref. [17], [26]
for a fixed subset of the system parameters (Æ� �� ��� ��) and
for a space area range of the radiation damping feedback �.
The regions of � that would admit chaotic solutions were
obtained. For instance, the NBE exhibits chaotic behaviour
for Æ � ���
	, � � ��� � � ������ �� � � and �� � ��� as
shown in Fig. 1 and Fig. 2.

Additionally, Moukam Kakmeni, Nguenang and Kofane
[28], examined the dynamics of a variant NBE, extended
to account for both the bi-axial property of the magnets to
which the set of spins belongs and the presence of a back
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Fig. 1. Chaotic dynamics of the uncontrolled NBE. Parameters are: Æ � �����, � � ��� � � ������ �� � � and �� � ���
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Fig. 2. Time history of the NBE system for the same parameter set as in Fig. 1

action from the probe. In [17], [27], [28], the synchronization
behaviours of the NBE were also reported. Ucar et al.
[17] studied the synchronization of drive-reponse system of
the NBE with non-identical parameters using active control
while in Ref. [27], Park studied the synchronization of
the NBE with uncertain parameters. Moukam Kakmeni et.
al. [28], considered the synchronization problem based on
adaptive approach, using both linear and nonlinear feedback
couplings. In all these reports, the control of the NBE chaotic
behaviour to regular dynamics has not been addressed. In this
paper, we set up a new chaos control scheme which we have

recently developed for the NBE.

III. DESIGN OF RAC FOR NBE

To control the NBE chaotic attractor, we introduce the
control functions 
��� � �� �� �
 as follows
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and define the error dynamics as
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where the 
�

���� � �� �� �
 are arbitrary chosen control param-
eters; ��� is the reference output; ���� ��� are recursively
introduced control inputs. Now, differentiating eq. (3) and
(4); and substituting eqs. (2) into the resulting equations, we
obtain the following error dynamics system:
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In (5), the 
�
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 have be chosen so that the
����� � �� �� �
 terms on the RHS varnishes. Here, 
� � 
� �

� � �. In the absence of the control 
��� � �� �� �
, eg. (5)
would have an equilibrium at ��� �� �
. If a 
 ��� � �� �� �
 is
chosen such that the equilibrium remains unchanged, then the
problem can be transformed to that of realizing asymptotic
stabilization of system (5). Thus, the goal is to find the
controls such that the system (5) is stabilized at the origin.
Following the original method of active control, we re-define
the control functions as follows


� � �� � ������ ���� � �� �	��
�


� � �� � ������ �	�� � �� ����
� (6)


� � �� � � �������� � ���
�
�

��
�

With (6), the error dynamics (5) becomes:
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We choose a feedback matrix A which will control the
error dynamics (11) such that
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In (9) the three eigenvalues ��, �� and �� are negative to
ensure that a stable controlled state is achieved. Here, we fix
�� � �� � �� � ��.

When the control is switched on, it is clear from the nu-
merical simulation shown in Fig. 3 that the chaotic behaviour
has been controlled as soon as the control is activated at
� � ���.

IV. CONCLUSION

In this paper, we have combined a recursive approach
with the active control technique to formulate a new control
technique that elliminates the chaotic behaviour in nonlinear
Bloch equations. The proposed Recursive Active Control
(RAC) is simple to implement. Numerical simulations have
been employed to confirm our results.
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Fig. 3. Time history of the NBE system when control has been activated at � � ��� for the same parameter set as in Fig. 1
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