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Abstract— In this paper, the projective synchronization (PS)
in a drive-response system of the nonlinear Bloch equations
(NBE) is considered. A generalized nonlinear control that is
effective in achieveing PS with a constant, as well as different
scaling factors is proposed. We prove the stability of the PS
state using the Lyapunov stability theory and give numerical
evidence of PS in the NBE.

Index Terms— Nonlinear Bloch equations, chaos, projective
synchronization

I. INTRODUCTION

During the begining of the last decade, one of the most
fascinating discoveries that transformed research in the field
of nonlinear dynamics and chaos theory is the fact that
two or more chaotic systems evolving from different initial
conditions can be made to synchronize, either by coupling
the systems (locally or globally) or by forcing them [2]. This
was demostrated by Pecora and Carroll [1]. Synchronization
can be understood as a state in which two or more systems
(with dynamics that can either be periodic or chaotic) adjust
each other giving rise to a common dynamical behaviour [2].
In view of its practical applications in diverse disciplines
such as biological, chemical, neurological systems as well
as secure communications, cryptography, and so on [2], [3],
[4], the phenomenon of synchronization has been widely
investigated in several practical systems. In recent years, dif-
ferent kinds of synchronization phenomena have been found
in different systems: Complete (or identical) [1], generalized
[5], phase [6], lag [7], anticipatory [7], [8], measure [9], [10],
reduced-order [11], [12] and projective synchronization [13],
[14], [15], [16], [17].

For complete or full synchronization, the trajectories of
two chaotic systems converges, i.e. y(t) = x(t). However,
an interesting case, namely projective synchronization, first
reported in [13] is characterized by a situation when a slave
chaotic system synchronizes with the projection of the master
chaotic system with a constant scaling factor. The condition
for this kind of synchronization to occur in both partially and
nonpartially discrete and continuous chaotic systems were
considered in [14], [15], [16].

In this paper, we study the projective synchronization
in the nonlinear Bloch equations (NBE). The dynamics of
ensemble of spins usually described by Bloch equations
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is very important for the understanding of the underlying
physical process of nuclear magnetic resonance. In this
direction, Abergel [18] examined the linear set of equations
originally proposed by Bloch based on chaos theory; while
Ucar et al. [19] extended the work of Abergel [18] and also
demonstrated the possibility of realizing chaos synchroniza-
tion between two nonlinear Bloch equations. Additionally,
Moukam Kakmeni et al [20], examined the dynamics of
a variant NBE, extended to account for both the bi-axial
property of the magnets to which the set of spins belongs
and the presence of a back action from the probe. In [20],
the synchronization behaviour of the NBE were considered
based on adaptive approach, using both linear and nonlinear
feedback couplings; while Park [21] studied the synchroniza-
tion of the NBE with uncertain parameters. More recently,
chaos suppression in the NBE were considered in [22], [23].

II. MODEL

The model is derived from magnetization M precessing
in the magnetic induction field B0 in the presence of a
constant radiofrequency field B1 with intensity B1 = !1

° and
frequency !rf and consists of the three nonlinear modified
Bloch equations (NBE) given in dimensionless units as

ẋ = ±y + ¸z(x sinÃ − y cosÃ)− x

¿2
,

ẏ = −±x− z + ¸z(x cosÃ + y sinÃ)− y

¿2
, (1)

ż = y − ¸ sinÃ(x2 + y2)− z − 1

¿1
,

where the dots denotes time derivatives, ±, ¸, and Ã are
the system parameters; and ¿1 and ¿2 are longitudinal time
and transverse relaxation time respectively. The dynamics of
system (1) has been extensively studied in Ref. [18], [19]
for a fixed subset of the system parameters (±, ¸, ¿1, ¿2) and
for a space area range of the radiation damping feedback Ã.
The regions of Ã that would admit chaotic solutions were
obtained. For instance, the NBE exhibits chaotic behaviour
for ± = −0.4¼, ¸ = 30, Ã = 0.173, ¿1 = 5 and ¿2 = 2.5.
Further detailed analysis and the rich dynamics of this system
is given in [24]

III. PROJECTIVE SYNCHRNIZATION

Our goal is to obtain a generalized nonlinear control that
could, beside full synchronization achieve the projective syn-
chronization between two identical NBE systems with known
parameters and evolving from different initial conditions -
using the same and different scaling factors. Let us consider



a driver NBE system given by

ẋ1 = ±y1 + ¸z(x1 sinÃ − y cosÃ)− x1

¿2
,

ẏ1 = −±x1 − z1 + ¸z1(x1 cosÃ + y1 sinÃ)− y1
¿2

, (2)

ż1 = y − ¸ sinÃ(x2
1 + y21)−

z1 − 1

¿1
,

and a response NBE system given by

ẋ2 = ±y2 + ¸z2(x2 sinÃ − y2 cosÃ)− x2

¿2
+ u1,

ẏ2 = −±x2 − z2 + ¸z2(x2 cosÃ + y2 sinÃ)− y2
¿2

+ u2,(3)

ż2 = y − ¸ sinÃ(x2
2 + y22)−

z2 − 1

¿1
+ u2,

where the ui(i = 1, 2, 3) are control inputs to be determined.
In order to find suitable control inputs ui(i = 1, 2, 3), such
that the system (2) synchronizes with a projection, ®i(i =
1, 2, 3) of system (3), we define the synchronization error
dynamics between the driver and the response systems as
e1 = x2−®1x1, e2 = y2−®2y1 and e3 = z2−®3z1. This im-
plies that there exist a constant matrix ® = diag(®1, ®2, ®3)
such that the limt→∞ ∣∣ei∣∣(i = 1, 2, 3) = 0.

With the above definition of the error states, we obtain the
following error dynamics system:

ė1 = ±e2 + ¸[z2(x2 sinÃ − y2 cosÃ)

−®1z1(x1 sinÃ − y1 cosÃ)]− e1
¿2

+ u1,

ė2 = −±e1 − e3 + ¸[z2(x2 cosÃ + y2 sinÃ)

−®2z1(x1 cosÃ + y1 sinÃ)]− e2
¿2

+ u2, (4)

ė3 = e2 − ¸[sinÃ(x2
2 + y22)

−®3 sinÃ(x
2
1 + y21)]−

ez − 1

¿1
+ u3.

Notice that in the absence of the control inputs ui(i =
1, 2, 3), the systems (4) would have equilibrium at (0, 0, 0).
Thus, if suitable control inputs are chosen such that the
equilibrium is not changed, then the synchronization problem
would reduced to achieving the asymptotic solution of the
error system (4). In this regards, we employ the Lyapunov
stability theory to ascertain the asymptotic stability of system
(4) at the origin (0,0,0) for suitable choice of control inputs.

Proposition: The drive-response system of NBE (3) and
(4) can approach projective synchronization asymptotically
with the same scaling factor ®1 = ®2 = ®3 or different
scaling factors ®1 ∕= ®2 ∕= ®3, if the controllers ui(i =

1, 2, 3) are chosen such:

u1 =

(
1

¿2
− 1 + k1

)
e1 − ±e2 − ¸[z2(x2 cosÃ + y2 sinÃ)

−®2z1(x1 cosÃ + y1 sinÃ)],

u2 = ±e1 +

(
1

¿2
− 1 + k2

)
e2 + e3 − ¸[z2(x2 cosÃ + y2 sinÃ)

−®2z1(x1 cosÃ + y1 sinÃ)], (5)

u3 = −e2 +

(
1

¿1
− 1 + k3

)
e3 + ¸[sinÃ(x2

2 + y22)

−®3 sinÃ(x
2
1 + y21)].

and feedback gains ki(i = 1, 2, 3) ≤ 0.
Proof: Consider the following Lyapunov function:

V =
1

2

3∑

i=1

(1− ki)e
2
i , (6)

whose time derivative along the trajectories is

V̇ =

3∑

i=1

(1− ki)eiėi. (7)

If ėi = −ei and ki ≤ 0 then,

V̇ = −
3∑

i=1

(1− ki)e
2
i < 0. (8)

Based on the Lyapunov stability theory, the error dynamical
system (4) is asymptotically stable at the origin (0, 0, 0);
therefore projective synchronization is achieved between the
drive-response NBE (2) and (3) regardless of the value of
the scaling factor.

IV. NUMERICAL RESULTS

Previous studies on chaos synchronization of the non-
linear Bloch equations considered the simple case where
® = diag(®1, ®2, ®3) = diag(1, 1, 1) which corresponds
to complete or full synchronization. In the general case
where ® = diag(®1, ®2, ®3) ∕= diag(1, 1, 1) and also the
more stringent case where ®1 ∕= ®2 ∕= ®3, we have
shown that synchronization could be also achieved as long
as the inequality (8) is satisfied. Note also that the case
® = −diag(1, 1, 1) corresponds to the so-called complete
anti-synchronization. Thus, with the controller (5), one can
achieve four kinds of synchroniation, namely: complete
synchronization, complete anti-synchronization, projective
synchronization and projective anti-synchronization. In what
follows, we give some numerical simulations to confirm our
theoretical analysis and we fix the parameters as follows:
± = −0.4¼, ¸ = 30, Ã = 0.173, ¿1 = 5 and ¿2 = 2.5 so that
the stable chaotic behaviour is obtained.

First we consider the case ® = diag(®1, ®2, ®3) ∕=
diag(1, 1, 1). In Fig. 1(a), we give numerical results for
diag(®1, ®2, ®3) = diag(2, 2, 2) and ki = −200. Here, we
activate the control at t ≥ 20. It is clear that PS has been
achieved.

In Fig. 1(b), we also plot the projection of the chaotic
attractors for the driver NBE (red) and the response NBE
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Fig. 1. (a) Time history of the error dymanical systems ei(i = 1, 2, 3)
showing the projective synchronization and (b) projection of the chaotic
attractors of the drive-response NBE system in the projective synchronized
state corresponding to (a) for ki = −200 and diag(®1, ®2, ®3) =
(2, 2, 2). Parameters are: ± = −0.4¼, ¸ = 30, Ã = 0.173, ¿1 = 5 and
¿2 = 2.5

(blue) corresponding to the Fig. 1. In Fig. 2(a), we set ®1 ∕=
®2 ∕= ®3, i.e (®1, ®2, ®3) = (0.5, 0.01, 0.1) and the feedback
gain ki(i = 1, 2, 3) = −200. Again, we find that the PS
is achieved. Fig. 2(b) shows the projection of the attractors
in the (x1, y1, z1)(blue) and (x2, y2, z2) (red) phase space.
Notice the difference between Fig. 1(b) and 2(b). In both
Figs. 1(b) and 2(b), we find attractor scaling, in which case,
the size of the chaotic attractor (in the x2, y2, z2) phase space
shown in Fig. 1(b) is enlarged; whereas its size is reduced
in Fig. 2(b) - suggesting that the system dynamics as well
as its complexity could be control by means of appropriate
scaling factors.

V. CONCLUSION

In this paper, we have obtained a generalized nonlinear
controls that is effective in realizing the projective synchro-
nization for the nonlinear Bloch equations using the same and
different values of the scaling factors. The control inputs is
generalized in the sense that one can achieve the complete
synchronization by setting the scaling factors, ®i = 1; anti-
synchronization for ®i = −1; projective synchronization
for ®i ∕= 1, projective anti-synchronization for ®i = −®j

(®j ∕= 1 or ®j ∕= 0) and modified projective synchronization
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Fig. 2. (a) Time history of the error dymanical systems ei(i = 1, 2, 3)
showing the projective synchronization and (b) projection of the chaotic
attractors of the drive-response NBE system in the projective synchronized
state corresponding to (a) for ki = −200 and diag(®1, ®2, ®3) =
(0.5, 0.01, 0.1). Parameters are: ± = −0.4¼, ¸ = 30, Ã = 0.173, ¿1 = 5
and ¿2 = 2.5

®1 ∕= ®2 ∕= ®3. The condition for the projective synchro-
nization to occur was obtained using the Lyapunov stability
theory. Numerical simulations were carried out to verify the
effectiveness of the control inputs obtained for the NBE.
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