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Abstract
A reduced form of switched linear systems is in-

troduced as a simplification of switched linear sys-
tems. Reachability properties of the original systems
are studied by using the reachability of the reduced sys-
tems. This will yield a simplification of the involved
computations.
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1 Introduction
Hybrid systems have been attracting much attention

in the recent past years because of the arising problems
are not only academically challenging but also of prac-
tical importance in a wide field of applications ranging
from manufacturing systems to information processes
and modeling ecosystems, among others [Mosterman.
2007].
Switched linear systems belong to a special class of

hybrid control systems which comprises a collection
of subsystems described by linear dynamics (differ-
ential/difference equations) together with a switching
rule that specifies the switching between the subsys-
tems (see [Sun and Ge, 2005]-[Yang, 2002]).
The paper is organized as follows: Section 2 is de-

voted to reviewing switched linear systems by giving
some motivating examples and main results about be-
havior of a switched linear system.
Section 3 study reachability property by giving a new

method which reduces the case(Aσ, Bσ) to the case
(Aσ, B). The reduced system allows a simplification of
the reachability condition and permits the construction
of a tree that represents the behaviour of the system.
An example is also given.
Thanks to this tree structure, Section 4 provides an al-

gorithm to check reachability of a switched linear sys-
tem. Section ends with a discussion about the compu-
tational improvement given by this new method.

2 Switched Systems
Definition 2.1. A Switched Linear System is given by
an evolution equation on the form

x(t + 1) = Aσ(t)x(t) +Bσ(t)u(t)
}

(1)

wherex ∈ Kn is the internal state of system,u ∈ Km

is a external input (or control) of system, together with

σ(t) = ϕ(t, σ(t− 1), x(t))
}

(2)

which is the next command function. Commands (or
switches) are finite sequences (words) on the finite al-
phabetΣ = {0, ..., s − 1}. We calln, m and s the
dimensions of the system, of the input and of the switch-
ing alphabet respectively.

For simplicity we denote a Switched Linear System
by Γ = (Aσ , Bσ).
It is interesting to study the behavior of a given

switched linear system for a fixed sequenceσ of com-
mands (or switching signals) and a fixed sequenceu of
external inputs.
First we need a preparatory result.

Lemma 2.2. The behavior of a switched linear system
Γ is given by the equalities

ΦΓ(x0, στ, uv) = AτΦΓ(x0, σ, u) +Bτv

ΦΓ(x0, τ, v) = Aτx0 +Bτv

}
(3)

Whereσ ∈ Σ∗, τ ∈ Σ, u ∈ (Km)
∗ andv ∈ Km.

Proof.- Direct application of the definition of switched
linear system�



Theorem 2.3. Let Γ : x(t + 1) = Aσ(t)x(t) +
Bσ(t)u(t) be a switched linear system .The behav-
ior of systemΓ from initial statex0, with sequence
σ = σ(0)σ(1) · · · σ(s) of commands, and sequence
u = u(0)u(1), ..., u(s) of controls is

ΦΓ(x0, σ, u) = Aσ(s)Aσ(s−1) · · ·Aσ(2)Aσ(1)x0+
+
∑s

i=0 Aσ(s)Aσ(s−1) · · ·Aσ(i+1)Bσ(i)u(i)

}

(4)

Proof.-The cases = 1 is clear, we prove the result by
induction. Assume the result fors; that is,

ΦΓ(x0, σ, u) = Aσ(s)Aσ(s−1) · · ·Aσ(2)Aσ(1)x0+
+
∑s

i=0 Aσ(s)Aσ(s−1) · · ·Aσ(i+1)Bσ(i)u(i)

}

(5)
Consequently, by 2.2

ΦΓ(x0, σσ(s + 1), uu(s+ 1)) =

= Aσ(s+1)Aσ(s) · · ·Aσ(2)Aσ(1)x0 +

+Aσ(s+1)

(
s∑

i=0

Aσ(s)Aσ(s−1) · · ·Aσ(i+1)Bσ(i)u(i)

)

+Bσ(s+1)u(s+ 1) =

= Aσ(s+1)Aσ(s) · · ·Aσ(1)Aσ(0)x0

+

s∑

i=0

Aσ(s)Aσ(s−1) · · ·Aσ(i+1)Bσ(i)u(i)

�

Reachability is a central property of (dynamical) sys-
tems. In the switched linear case we research the set of
internal states that can be reached by a given switched
linear systemΓ for any sequence of commandsσ and
any sequence of external inputsu.

Definition 2.4. Let Γ : x(t + 1) = Aσ(t)x(t) +
Bσ(t)u(t) be a switched linear system. Letx0 andω be
two internal states. We say thatω is switched reachable
from initial statex0 if there exists a chain of commands
σ and a chain of inputsu such that

ΦΓ(x0, σ, u) = ω
}

(6)

We will denote this fact byx0  (σ,u) ω or simply by
x0  ω.
We say thatΓ is reachable if for every pair of states
x1, x2, one has thatx1  x2.

Note that for switched systems reachability is also
equivalent to controllability (see [Xie and Wang,
2003]). Interested reader is referred to [Xie and Wang,
2003] and [Sun and Ge, 2005] for the study of reacha-
bility and other related properties.

3 Reduced form of a system
Next we introduce a way to study a given switched

linear systemΓ by using a new switched linear sys-
temΓ̃ directly obtained fromΓ. Main advantage is that

Γ̃ =
(
Ãσ, B̃

)
and all subsystems have same control

matrix B̃. This will yield a simplification of reachabil-
ity calculations.
Let Γ = (Aσ , Bσ) be a switched linear system, we

define a new switched linear system̃Γ =
(
Ãσ, B̃

)
,

where

Ãσ =

(
0 0
Bσ Aσ

)
B̃ =

(
Id 0
0 0

)}
(7)

During the rest of the paper, a system̃Γ =
(
Ãσ, B̃

)

will denote a system obtained from a systemΓ =
(Aσ, Bσ) as explained. If systemΓ is of n dimension
we will say that system̃Γ is also of dimensionn, not
n+m (the dimension of the new matrix̃A) as we may
suppose.
Behavior ofΓ and ofΓ̃ are closely related. In fact we

have that reachability from zero-state is an equivalent
notion in Γ and in Γ̃. First we need to note an easy
previous result.

Lemma 3.1. Given a systemΓ = (Aσ , Bσ) and its re-

duced system̃Γ =
(
Ãσ, B̃

)
we have:

ΦΓ̃

((
0
0

)
, σ(0) · · ·σ(s),

(
u(1)
0

)
· · ·

(
u(s)
0

)(
z

0

))

=

(
z

ΦΓ(0, σ(1) · · ·σ(s), u(1) · · ·u(s))

)





(8)

Proof.- It is easily checked by induction ons �

Theorem 3.2. Switched Linear SystemΓ is reachable

from0 if and only if system̃Γ is reachable from

(
0
0

)
.

Proof.- Suppose that systemΓ is reachable from zero

and let us prove that every internal state

(
ω1

ω2

)
of Γ̃

can be reached from zero. SinceΓ is reachable from
zero it follows that

ω2 = ΦΓ(0, σ(1) · · ·σ(s), u(1) · · ·u(s))
}

(9)

Consequently

ΦΓ̃

((
0
0

)
, σ(0) · · ·σ(s),

(
u(1)
0

)
· · ·

(
u(s)
0

)(
ω1

0

))



=

(
ω1

ω2

)

And we are done. The converse result is proved in a
similar way�

Definition 3.3. LetΓ : x(t+ 1) = Aσ(t)x(t) +Bu(t)
be a switched linear system. Denote byReachs(Γ) the
linear subspace of all reachable states from0 with at
mosts commands; that is to say

Reachs(Γ) = {x : ΦΓ (0, σ, u) = x; |σ|, |u| ≤ s}
}

(10)

In the classical case of linear systems without switch
it is well known thatΓ is reachable if and only if
Reachn(Γ) = Kn. We will state the same result for
the case of switched linear systems whenK is an infi-
nite field.
Obviously we have thatReachs(Γ) is a subset
Reachs+1(Γ) for all s. But we can say something
more:

Lemma 3.4. In a systemΓ = (Aσ, B):

Reachs(Γ) = Reachs+1(Γ) ⇒

⇒ Reachs+1(Γ) = Reachs+2(Γ)

}
(11)

Proof.- It is sufficient to prove that the following state-
ment yields a contradiction:

Reachs(Γ) = Reachs+1(Γ)  Reachs+2(Γ)
}

(12)

Let x ∈ Reachs+2(Γ) − Reachs+1(Γ) and assume
that

x = ΦΓ (0, σ(0)σ(1) · · · σ(s+ 1), u(0)u(1) · · ·u(s+ 1))

Then it follows that

x′ = ΦΓ (0, σ(0)σ(1) · · ·σ(s), u(0)u(1) · · ·u(s))

∈ Reachs+1 = Reachs(Γ)

Consequently

x′ = ΦΓ (0, τ(0)τ(1) · · · τ(s − 1), v(0)v(1) · · · v(s− 1))

for someτ, v.
On the other handx = ΦΓ (x

′, σ(s+ 1), u(s+ 1)).
Therefore

x = ΦΓ (0, τ(0)τ(1) · · · τ(s − 1)σ(s+ 1),

, v(0)v(1) · · · v(s− 1)u(s+ 1)) ∈

∈ Reachs+1(Γ)

which is a contradiction�
First note thatReachn(Γ) is not a linear subspace of

the state spaceKn but it is finite union of linear sub-
spaces ofKn (see [Sun and Zheng, 2001]). To be con-
cise, if we denote byReachσ(0)···σ(s−1)(Γ) the set of
reachable states from zero by using the sequence of
commandsσ then

Reachσ(Γ) = Im(B,Aσ(1)B, ..., Aσ(s−1) · · ·Aσ(1)B)
}

(13)
and consequently

Reachn(Γ) =
⋃

|σ|=nReachσ(Γ)
}

(14)

Since we are working on infinite fields, a union of sub-
spaces is the whole vector space if and only if one of
involved subspaces is. Thus:

Lemma 3.5. Given a system Γ = (Aσ , B)
Reachn(Γ) = Kn if and only ifReachσ(Γ) = Kn for
someσ with |σ| = n.

That is to say, if a system is reachable, all the states
of the system can be reached with just one chainσ of
switching signals (and the adequate inputs).
On the other hand it is not difficult to check that
Reachσ(Γ) is a linear subspace ofReachστ (Γ) for all
τ ∈ Σ∗. Therefore dimensions can only increasen

times (all of them are subspaces ofKn). Consequently
the chain

· · · ⊆ Reachs(Γ) ⊆ Reachs+1(Γ) ⊆ · · ·
}

(15)

stabilizes at indexn. If an internal state cannot
be reached usingn commands then it can never be
reached.
Above discussion is the proof of the following result:

Theorem 3.6. Let K = R,C. Let Γ : x(t + 1) =
Aσ(t)x(t) + Bu(t) be a switched linear system. Then
Γ is reachable from0 if and only ifReachn(Γ) = Kn

As main consequence we have the criterion of reach-
ability of switched linear systems with common input
matrixB in terms of reachability from zero.

Theorem 3.7. Let K = R,C. Let Γ : x(t + 1) =
Aσ(t)x(t) + Bu(t) be a switched linear system. Then
Γ is reachable if and only ifΓ is reachable from0

Proof.- ⇒ is straightforward. To prove the converse
note that, by previous result we have thatΓ is reachable
from zero if and only if

Reachn(Γ) =
⋃

|σ|=n Reachσ(Γ) = K
n
}

(16)



And from 3.5 we have thatKn = Reachσ(Γ) for
someσ such that|σ| = n. In particular,

x2 −Aσ(s) · · ·Aσ(0)x1 ∈ Reachσ(Γ)

Hence one has the equality

x2 −Aσ(s) · · ·Aσ(0)x1 = ΦΓ(0, σ, u)

which is equivalent to the equality

x2 = ΦΓ(x1, σ, u)

Thereforex1  x2 for all x1, x2 andΓ is reachable�
As a consequence of 3.2, 3.6 and 3.7 we obtain the

main result of the paper:

Corollary 3.8. LetΓ = (Aσ, Bσ) be a switched linear

system and̃Γ =
(
Ãσ, B̃

)
its reduced system. ThenΓ

is reachable if and only ifReachn(Γ̃) = Kn

Thus to obtain the reachable states of a switched linear
systems it is sufficient to obtain

∑n−1
k=0 (#Σ)k blocks

that need to be adequately arranged. In the case of a
switched linear systemΓ : x(t + 1) = Aσ(t)x(t) +
Bu(t) whereσ ∈ {0, 1} (i.e. two subsystems) we need
to evaluate the following tree of block matrices:

B

A0B A1B

A0A0B A1A0B A0A1B A1A1B

We write down an explicit example for a switched lin-
ear system proposed in [Xie and Wang, 2003]:

Example 3.9. Consider the three-dimensional (n = 3)
single-input (m = 1) switched linear system (K = R)
given byΓ = (Aσ , Bσ,Σ = {0, 1}) where:

A0 =




2 1 1
0 1 0
0 0 −1


 , B0 =




1
0
0




A1 =




0 0 0
1 0 2
0 0 −2


 , B1 =




0
0
1




Now, system̃Γ is given by

Ã0 =




0 0 0 0
1 2 1 1
0 0 1 0
0 0 0 −1


 , Ã1 =




0 0 0 0
0 0 0 0
0 1 0 2
1 0 0 −2


 , B̃ =




1
0
0
0




Now system is reachable if and only ifΓ̃ is reachable
using a chain of at mostn +m = 4 commands. Note
the reverse indices from the sequence of commands and
the indices of matrices. It is not difficult to complete
the table and obtain thatσ = x010, with x = 0|1, is a
sequence of commands that reaches every state (using
adequate input sequenceu) because

span{B̃, Ã0B̃, Ã0Ã1B̃, Ã0Ã1Ã0B̃} =

= span








1
0
0
0


 ,




0
1
0
0


 ,




0
1
0
−1


 ,




0
1
1
0








=

= Rn+m.

So, the original systemΓ = (Aσ, Bσ,Σ = {0, 1}),
is reachable using the switching signalσ = 010 (the
same chain without the first symbol) and the adequate
input sequence.

4 Computational considerations
Using the previous results we can build and algorithm

to easily check the reachability of a switched linear sys-
tem. If we start with a switched system in the form
Γ = (Aσ , Bσ), first we need to transform it to the re-

duced formΓ̃ =
(
Ãσ, B̃

)
.

Then, we can use the next recursive function to check
the reachability of the reduced system. This function
returns ”true” (system is reachable) if it finds a base of
the vector spaceKn (stored in the variable newVectors)
and ”false” (system is not reachable) in other case. This
function can be seen as a preorder traversal of the tree
described in the previous section. The function is first
called with Reachable(1, 0, B, null).

Global variables: n, s,A0 . . . AS−1, B.

Reachable(currentn,
,currents,
,currentMatrix,
,currentVectors)

newMatrix =Acurrents * currentMatrix
newVectors = completeBase(currentVectors

,newMatrix)
if dim(newVectors) = n then
result := true

else
if current n < n then
for i:=0 to s− 1



result := Reachable(currentn+1
,i
,newMatrix
,newVectors)

else
result := false

return result

The first two instructions evaluate the current node,
building a base of the subspace of currently reached
states. If this subspace is not equal toKn then the func-
tion is called recursively for eachs to compute the next
level of the tree, until we reach then level.
Note that we are looking for a base ofKn in spite of
Kn+m in n iterations (notn+1). The missing iteration
is the one corresponding to the processing of the root of
the tree (matrixB). As matrixB always has the same
structure, its columns always complete the calculated
base to a base ofKn+m, so this operations are omitted.
The function completeBase() searches for new vectors

for the base of the space. If any of the columns of the
matrix ”newMatrix * B” is linearly independent with
the vectors of ”currentVectors”, this column is added
as a new vector of the base.
The complexity of this function is given by the recur-

sive equation:

reachable(n, s) = g (n) + s ∗ reachable(n− 1, s)
reachable(1, s) = g (n)

}

(17)
Whereg (n) is the complexity of the first two instruc-

tions of the algorithm (the processing of each node).
One can verify that the solution of this equation is:

reachable(n, s) = g (n) ∗ sn−1
s−1

}
(18)

The complexity ofg (n) is given by a matrix multipli-
cation and the evaluation of the linear dependency of
vectors. The matrix multiplication has complexityn3.
The test of the linear dependency we can be done using
a Gauss-Jordan elimination which also has a complex-
ity of n3.
So, the order of complexity of the algorithm is:

reachable (n, s) ∈ O (sn)
}

(19)

This is quite obvious bearing in mind that the algo-
rithm is a preorder traversal of a tree. And the com-
plexity of a preorder traversal is the number of nodes
multiplied by the processing of each node (see [Knuth,
1998]).
In the previous known result (from [Sun and Zheng,

2001]), the reachability of a system is checked by cal-
culatingn consecutive subspaces (Vi); system is reach-
able if the last subspaceVn equals the whole space. The

first subspaceV1 is build usings∗nmatrices. Next sub-
spaces are obtained usings∗n matrices multiplications
for each one of the matrices calculated for the preced-
ing subspace. So we can see that the complexity of this
algorithm is ofO ((s ∗ n)n) = O (sn ∗ n!).
If we compare both results we can see that there is an

important jump in the complexity order of calculating
the reachability of a system.
If we suppose the order of the system constant, both

methos result in an exponential complexityks. But, on
the other hand, in the most common case, the number
of subsystems will be a small number, and we want to
know how the algorithm behaves when the dimension
of the systemn grows arbitrary. In this case, the pre-
vious algorithm has factorial complexityn!, the worst
possible; while our algorithm has exponential complex-
ity kn. This is also the complexity order when both
dimensions can be freely increased.
Besides this computational improvement, our algo-

rithm can be easily modified to calculate, if the system
is reachable, the chain referenced in Lemma 3.5 (the
one that reaches all the states of the system). This is
because the tree structure under this system represents
the behaviour of the system: each path to a leaf node
computes the reachable states with each possible chain,
and the leveln of the tree computesReachn(Γ).
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