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Abstract
Chimera states are complex patterns that exhibit a

hybrid structure combining coexisting spatial domains
of coherent (synchronized) and incoherent (desynchro-
nized) dynamics. Recent studies have demonstrated
the appearance of chimera states in a variety of net-
work topologies and for different types of individual
dynamics. We analyse the emergence of chimera states
in networks with complex coupling topologies arising
in neuroscience and having hierarchical (quasi-fractal)
connectivities. Two cases of individual node dynam-
ics are considered: time-continuous Van der Pol oscil-
lators, and time-discrete logistic maps. We elaborate
the variety of chimera patterns in networks of different
hierarchical levels, and study the role of network sym-
metries and clustering.
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1 Introduction
Chimera states are peculiar type of dynamics when

complex network exhibits a hybrid state combining
both coherent and incoherent parts. The surprising as-
pect of this phenomenon is that these states were ini-
tially detected in systems of identical oscillators cou-
pled in a symmetric ring topology with a symmet-
ric interaction function and coexist with a completely
synchronized state [Kuramoto and Battogtokh, 2002;
Abrams and Strogatz, 2004]. The past decade has
seen an increasing interest in chimera states [Panag-
gio and Abrams, 2015; Schöll, 2016], it was shown
that they are not limited to phase oscillators but can

be found in a large variety of different systems, includ-
ing time-discrete maps, time-continuous chaotic mod-
els, neural systems, chemical oscillators, and optical
systems. Different types of network topologies, in-
cluding higher spatial dimensions, have been shown
to support chimera-like patterns. Potential applications
of chimera states in nature include the phenomenon of
unihemispheric sleep, bump states in neural systems,
power grids, social systems.
The motivation for studying irregular network topolo-

gies comes from recent results in the area of neuro-
science. Diffusion tensor magnetic resonance imag-
ing (DT-MRI) studies revealed an intricate architec-
ture in the neuron interconnectivity of the human and
mammalian brain. The analysis of DT-MRI images
has shown that the connectivity of the neuron axons
network represents a hierarchical geometry with frac-
tal dimensions varying between 2.3 and 2.8, depend-
ing on the local properties, on the subject, and on the
noise reduction threshold [Katsaloulis et al., 2009; Ex-
pert et al., 2011; Provata et al., 2012]. Based on these
findings, we study the development of chimera states
in networks which involve topologies with hierarchical
connectivities. We uncover the influence of the irreg-
ular connectivity on the appearance and properties of
chimera states.

2 An algorithm for construction of hierarchical
connectivities

Topologies with hierarchical connectivities can be
generated using a classical Cantor construction algo-
rithm for a fractal set. This iterative hierarchical proce-
dure starts from a base pattern or initiation string binit
of length b, where each element represents either a link



Figure 1. Transition from nonlocal to hierarchical connectivity via hierarchical steps m. The reference node is coloured in black, linked nodes
in red and unconnected nodes (gaps) in grey. The initial base pattern of all panels is binit = (101), the level of hierarchy is n = 3,
N = bn + 1 = 28 nodes. (a) m = 1, each element in the initial base pattern is expanded by 27

3 = 9 elements and the final 1-step
hierarchical system corresponds to nonlocal coupling where each element is coupled to its R = 9 nearest neighbours in both directions;
(b) m = 2, expansion by 27

9 = 3 elements to a 2-step hierarchical system; (c) m = n = 3, fully hierarchical or n−step hierarchical
system without further expansion of the base pattern.

(’1’) or a gap (’0’). The number of links contained in
binit is referred to as c1. In each iterative step, each
link is replaced by the initial base pattern, while each
gap is replaced by b gaps. Thus, each iteration increases
the size of the final bit pattern, such that after n itera-
tions the total length is N = bn. Since the hierarchy is
truncated at a finite n, we call the resulting pattern hi-
erarchical rather than fractal. Using the resulting string
as the first row of the adjacency matrix G, and con-
structing a circulant adjacency matrix G by applying
this string to each element of the ring, a ring network
of N = bn nodes with hierarchical connectivity is gen-
erated. We slightly modify this procedure by adding
an additional zero in the first instance of the sequence,
which corresponds to the self-coupling. This ensures
the preservation of an initial symmetry of binit in the
final link pattern, which is crucial for the observation
of chimera states. Thus a ring network of N = bn + 1
nodes is generated. First, binit is iterated m times ac-
cording to the Cantor construction process, generating
a pattern of size bm. Afterwards, this pattern is ex-
panded to the final size N by replacing each element
with N−1

bm copies of itself.
Figure 1 demonstrates the simplest example of hierar-

chical connectivity for the initial base pattern binit =
(101) and system size of N = 27 + 1 (b = 3, n = 3).
In the following, an m−step hierarchical topology is
denoted as (binit)m, where binit is the underlying base
pattern, n the level of hierarchy and m the hierarchical
step in a transition topology.

3 Networks of Van der Pol oscillators with hierar-
chical connectivities

We consider a ring of N identical Van der Pol oscilla-
tors with different coupling topologies, which are given
by the respective adjacency matrix G. While keeping

the periodicity of the ring, and the circulant structure
of the adjacency matrix, we vary the connectivity pat-
tern of each element. The dynamical equations for the
2-dimensional phase space variable xk = (uk, u̇k)

T =
(uk, vk)

T ∈ R2 are:

ẋi(t) = F(xi(t)) +
σ

g

N∑
j=1

GijH(xj − xi) (1)

with i ∈ {1, ..., N}. The dynamics of each individual
oscillator is governed by

F(x) =

(
v

ε(1− u2)v − u

)
, (2)

where ε denotes the bifurcation parameter. The uncou-
pled Van der Pol oscillator has a stable fixed point at
x = 0 for ε < 0 and undergoes an Andronov-Hopf
bifurcation at ε = 0. Here, only ε > 0 is consid-
ered. The parameter σ denotes the coupling strength,
and g =

∑N
j=1Gij is the number of links for each node

(corresponding to the row sum of G). The interaction
is realized as diffusive coupling with coupling matrix

H =

[
0 0
b1 b2

]
and real interaction parameters b1 and

b2, which are fixed as b1 = 1.0 and b2 = 0.1.
Besides the bifurcation parameter ε and the coupling

strength σ, the topological quantities binit, c1, n, the
resulting link density ρ =

cn1
N (for m = n) or ρ =

cm1 b(n−m)

N (for m 6= n) and fractal dimension df =
ln c1/ ln b are important parameters in the study of net-
works with hierarchical connectivities. However, since
there are several distributions of links for a given set
of b and c1 that result in unique topological structures,
the arrangement of links in binit has to be accounted



Figure 2. Chimera states in transiting topologies with binit = (110011), n = 4, N = 1297, σ = 0.09, ε = 0.2, random initial
conditions. Snapshots of variables uk (upper panels), mean phase velocities ωk (middle panels), and snapshots in the phase space (uk, vk)
(bottom panels, limit cycle of the uncoupled element shown in black). (a) m = 1, corresponding to nonlocal coupling with r = 0.333,
clustering coefficient C(110011, 4, 1) = 0.749142, link density ρ = 0.667, 2−chimera state; (b) m = 2, clustering coefficient
C(110011, 4, 2) = 0.559569, link density ρ = 0.444, 7−chimera; (c) m = 3, clustering coefficient C(110011, 4, 3) =
0.414161, link density ρ = 0.298, 7− chimera remains; (d) m = n = 4, fully hierarchical network with 7−chimera and more
pronounced ωk profile,C(110011, 4, 4) = 0.297791 and ρ = 0.197.

for. Therefore, we consider the local clustering coeffi-
cient [Watts and Strogatz, 1998], which, for a network
containing a set of nodes V and edges E, describes
the number of links in the neighbourhood Ni = {vj :
eij ∈ E ∨ eji ∈ E} relative to the maximum number
of links possible. If ki is the number of neighbours for
a node vi, then maximum number of links is given by
ki · (ki− 1) and the clustering coefficient Ci for a node
vi is defined as Ci =

|{ejk:vj ,vk∈Ni,ejk∈E}|
ki(ki−1) .

Figure 2 depicts an example of stepwise transition
from nonlocal to hierarchical coupling for the sym-
metric base pattern (110011) with n = 4. For
m = 1 we observe chimera state with two coher-
ent domains, for further hierarchical steps the multi-
plicity of coherent domains increases. Similar proper-
ties show chimera states in the nonlocally coupled net-
works, there decreasing of the coupling range (number
of links) causes increasing of the number of coherent
domains for chimera states [Omelchenko, Provata et
al., 2015; Omelchenko, Zakharova et al., 2015]. In reg-
ular topologies, chimera states often have even num-
ber of coherent domains, which appear in anti-phase,
our observations show that more complex hierarchical
topologies can generate chimera states with odd num-
ber of coherent domains as well.
We have provided extensive numerical simulations for

a variety of hierarchical topologies, starting with differ-
ent base patterns, and determined stability regimes in
the plane of coupling strength and nonlinearity parame-
ter of the individual oscillator, which show that chimera
states indeed appear on the transition scenario between

complete coherence and incoherence. The analysis of
an exemplary network with larger base pattern, result-
ing in larger clustering coefficient and more complex
network structure, has revealed two different types of
chimera states highlighting the increasing role of am-
plitude dynamics.

Our analysis has identified the clustering coefficient
and symmetry properties of the base pattern as cru-
cial factors in classifying different topologies with re-
spect to the occurrence of chimera states. Symmet-
ric topologies with large clustering coefficients pro-
mote the emergence of chimera states, while they are
suppressed by slight topological asymmetries or small
clustering coefficients [Ulonska et al., 2016].

4 Networks of logistic maps with hierarchical con-
nectivities

In previous work we have studied the transition from
coherence to incoherence via chimera states in time-
discrete ring networks of logistic maps with nonlocal
coupling [Omelchenko et al., 2011]. This scenario has
been explained analytically [Omelchenko et al., 2012],
and realized experimentally [Hagerstrom et al., 2012].

In the current study, we analyse the influence of
complex topologies with hierarchical connectivities on
chimera patterns in networks of logistic maps. The sys-



Figure 3. Snapshots for a network ofN = 1297 logistic maps with base pattern binit = (110011). Columns correspond to hierarchical
stepsm = 1, 2, 3, 4, and the coupling strength σ = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 increases from bottom to top. Nonlinearity parameter of
individual logistic map a = 3.8.

tem under consideration is a ring of N logistic maps:

zt+1
i = f(zti) +

σ

cn,m

N−1∑
j=0

Cij

[
f(ztj)− f(zti)

]
, (3)

where f(zt) = azt(1−zt), the coupling strength is de-
noted by σ, and cn,m refers to the number of links for
the corresponding network node. The coupling matrix
C = (Cij) describes hierarchical connectivity for cho-
sen base pattern and hierarchical step, as described in
previous sections. t denotes the discrete time, and a is
a bifurcation parameter of the individual logistic map.
We choose a = 3.8, thus the uncoupled map performs
chaotic behaviour.
Selected mirror-symmetric base patterns, such as
binit = (101), binit = (11011), binit = (110011),
reproduce the nonlocal coupling topology at the initial
hierarchical step m = 1. We uncover the evolution
of chimera patterns on the transition to the higher hi-
erarchical steps. Figure 3 depicts snapshots (at fixed
time) for networks of N = 1297 maps with base pat-
tern binit = (110011). Each column corresponds to
a hierarchical step m, and the coupling strength σ de-
creases from top to bottom. In fact, higher hierarchical
steps correspond to a diluted network with larger num-
ber of connectivity gaps, however, this does not destroy
chimera patterns (panel d).
We have systematically investigated a variety of net-

works with different base patterns, and our findings

show that symmetric patterns maintain chimera states,
in agreement with our findings for time-continuous sys-
tems. The role of the coupling term in Eq. (3) has
been elaborated, and different types of chimera states,
as well as scenarios of their formation, have been in-
vestigated. We find stability regions for chimera states
in the (σ,m) parameter plane, which show that chimera
states can be observed at the transition from coherence
to incoherence.

5 Conclusion
The properties of complex spatio-temporal patterns,

named chimera states, in networks with hierarchical
connectivities have been investigated. Considering two
examples of time-continuous and time-discrete indi-
vidual dynamics, we demonstrate a large variety of
chimera patterns in networks with hierarchical connec-
tivity. We uncover the role of topological properties,
such as base patterns and symmetries, and demonstrate
that additional complexity in the topologies can induce
special types of chimera patterns, for instance nested
chimeras, which are not possible to observe in regular
nonlocal networks.
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Schöll E. (2016) Eur. Phys. J. Spec. Top. 225, 891.
Katsaloulis P., Verganelakis D. A., and Provata A.

(2009) Fractals 17, 181.
Expert P., Evans T. S., Blondel V. D., and Lambiotte R.

(2011) Proc. Natl. Acad. Sci. USA 108, 7663.
Provata A., Katsaloulis P., and Verganelakis D. A.

(2012) Chaos Soliton. Fract. 45, 174.
Watts D. J. and Strogatz S. H. (1998) Nature 393, 440.
Omelchenko I., Provata A., Hizanidis J., Schöll E.,
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