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Abstract

A method of computational reduction of an elastic
contact model for rigid bodies in frame of the Hertz
contact model is considered. An algorithm to trans-
form the outer surfaces geometric properties to the lo-
cal contact coordinates system is described. It tracks
permanently in time the surfaces of the bodies which
are able to contact.

An approach to compute the normal elastic force is
represented. That one deals with the reduction to one
transcendental scalar equation that includes the com-
plete elliptic integrals of the fist and second kinds. Sim-
ulation of the Hertz model was accelerated essentially
due to use of the differential technique to compute the
complete elliptic integrals and due to the replacement
of the implicit transcendental equation by the differen-
tial one.

Based on the Hertz contact problem classic solution
an invariant form for the force function which depends
on the geometric properties of an intersection for the
undeformed rigid bodies volumes, so-called volumet-
ric model, is proposed then. The resulting reduced ex-
pression for the force function supposed to be in use in
cases of the classic contact theory hypotheses are bro-
ken. The expression derived has been applied to several
cases of the elastic bodies contacting, and in particular
back to the source Hertz model itself.

The volumetric model showed a reliable behavior and
an acceptable accuracy. Finally an implementation of
the ball bearing dynamics computer model as an exam-
ple of the contact models application is under consid-
eration.

Key words
Hertz contact model, theorem of existence and

uniqueness, volumetric contact model, ball bearing
model.

1 Introduction
It is known [Gonthier, Lange, McPhee, 2007] to com-

pute a force of the elastic bodies interaction at a con-
tact several different approaches are applied: (a) the
classical Hertz model [Hertz, 1882], (b) the model
based on the polygonal approximation of the contact-
ing surfaces [Hippmann, 2004] applied to cases of
the surfaces of a complex shape, (c) the volumetric
model [Gonthier, Lange, McPhee, 2007]. In our model
we follow the classical Hertz approach, and the normal
force computation method is a main topic of our analy-
sis. To handle with the surfaces at the contact we apply
an approach defining the surfaces using an equations of
constraints. For definiteness and simplicity to simulate
the tangent contact force one uses a regularized model
of the Coulomb friction [Kosenko, 2005]. This is suffi-
cient enough to simulate the dynamics over time of the
machine under simulation lifecycle. May be some ad-
ditional complications for the friction model, e. g. an
account of the lubrication of any type, will be needed.

2 Reduction in Vicinity of Contact
Keeping a frame of the formalism applied previously

to simulate a unilateral constraint [Kosenko, 2005] con-
sider its particular case corresponding to mechanics of
elastic contact interaction for two rigid bodies, identi-



fied hereafter asA andB. Their outer surfaces, see Fig-
ure 1, being at contact supposed sufficiently regular.

Figure 1. Vicinity of the Contact Area

How to compute the two opposing nearest pointsPA

andPB of the surfaces to be tracked all over the simu-
lation process? Applying the notations obvious enough
we start here by reproducing the system of eight scalar
equations

grad gA (rPA
) = λ · grad gB (rPB

) ,
rPA − rPB = µ · grad gB (rPB ) ,

gA (rPA) = 0,
gB (rPB

) = 0.

(1)

defining the coordinatesxPA
, yPA

, zPA
, xPB

, yPB
,

zPB of the outer surfaces opposing pointsPA, PB ,
see Figure 1. Here the coordinate vectorsrPA =
(xPA

, yPA
, zPA

)T , rPB
= (xPB

, yPB
, zPB

)T are de-
fined with respect to (w. r. t.) the absolute coordinate
frameO0x0y0z0 of reference (AF ) usually connected
to the multibody system base bodyB0. Note the func-
tions gA (r0) = gA (r0, t), gB (r0) = gB (r0, t) are
really a time dependent ones, and define the outer sur-
faces current spatial position of the bodies at a contact
w. r. t. AF . The valuesλ, µ are an auxiliary variables.

It turned out by the computational practice the most
suitable approach to implement a system of algebraic
equations like (1) is to replace it by the system of DAEs
properly derived from (1). It can be done by introduc-
ing an additional variables being the time derivatives
and composing the differential subsystem of the form

ṙPA = uPA , ṙPB = uPB , λ̇ = ξ, µ̇ = η, (2)

completed by the algebraic one

[ωA, grad gA] +
TA Hess fATT

A (uPA − vPA)−
ξ grad gB − λ ([ωB , grad gB ] +

TB Hess fBTT
B (uPB

− vPB
)
)

= 0,
uPA

− uPB
− η grad gB−

µ ([ωB , grad gB ] +
TB Hess fBTT

B (uPB
− vPB

)
)

= 0,
(grad gA,uPA

)− (
grad fA, TT

A vPA

)
= 0,

(grad gB ,uPB
)− (

grad fB , TT
B vPB

)
= 0.

(3)

where the vectorsvPA
, vPB

are a velocities of the bod-
ies physical points currently located at the geometric
pointsPA, PB , ωA, ωB are the angular velocities of
the bodies. MatricesHess fA, Hess fB are the Hesse
ones of the functionsfA, fB defining the bodies outer
surfaces w. r. t. the bodies central principal coordinate
systems. The the functionsfA, fB relate to the ones
gA, gB according to the equations

gα (r0) = fα

[
TT

α (r0 − rOα)
]

(α = A,B),

whereTA, TB are the orthogonal matrices defining cur-
rent orientation of the bodies.
As usual for the Hertz approach we suppose the bod-

iesA andB don’t create any obstacles for their relative
motion. If 3D-regions bounded by the bodies outer sur-
faces don’t intersect then the contact computer model
has to generate a zero wrench in the direction of each
body. Simultaneously it has to generate the radius vec-
torsrPA

, rPB
of opposing with each other pointsPA,

PB .
Based on (1) note the variableµ indicates the con-

tact of the bodiesA andB. Indeed, for definiteness
suppose the outer surfaces in vicinities of the points
PA, PB are such that vectors of gradientsgrad gA (r),
grad gB (r) are directed outside the each body. Then
we have the following cases at hand: (a)µ > 0 means
the contact absent; (b)µ ≤ 0: the contact takes place.
If µ < 0 then the bodies supposed to penetrate each
other, though really begin to deform in a region of the
contact. In the sequel we follow the simplest elastic
contact model originating from Hertz [Hertz, 1882].
Computational analysis will be performed for the case
of contacting only, see Figure 2. For simplicity and
definiteness the surfaces are showed convex in Figure 2
though it is not necessary at all in general for our im-
plementation.
To represent the Hertz contact model in its classical

form first of all we have to construct an auxiliary base
in vicinity of the contact. First base is composed by
three unit vectorsα, β, γ such thatγ = nA, where
nA is the unit vector along the gradientgrad gA (r)
collinear to thez-axis in Figure 2. As it was for the
derivation of the opposing points the most appropriate
move to compute the proper base{α, β,γ} is to con-
struct a relevant subsystem of DAEs. First of all start



Figure 2. Local Coordinate System

with differential equation forγ. It has the form

γ̇ = |grad gA|−1 [(grad gA)˙− (nA, (grad gA) )̇nA] .

After that we can right down the chain of equations

Ω = [γ, γ̇] , α̇ = [Ω,α] , β = [γ, α] ,

defining successively the angular velocityΩ of the unit
vector γ(t) rotation, the differential equation for the
unit vectorα, and the unit vectorβ completing the lo-
cal base under construction. Actually the vectorΩ is
an angular velocity of the base triple{α, β,γ} w. r. t.
AF .
Using the base{α, β, γ} built up above it is easy

enough to compose the matrixT = [α, β,γ] consist-
ing of the columns composed themselves by the coor-
dinates of the unit vectors. ActuallyT is the transfer
matrix between coordinates ofAF and the current lo-
cal base{α, β, γ}. This makes it possible to express
the outer surfaces equations in coordinates of the local
system (LF ) having an origin at the pointPA, see Fig-
ure 2. Under the general assumptions of the regularity
for the bodies outer surfaces we can construct easily the
procedure transforming the surfaces equations perma-
nently in time to theLF such that they can be resolved
w. r. t. the variablez in the explicit form

z = a′αx2 + 2c′αxy + b′αy2. (4)

The further reduction comes to a transformation to
canonical representation of the quadratic form

q(x, y) = ax2 + 2cxy + by2, (5)

derived as a difference between the forms (4) such that
a = a′B − a′A, b = b′B − b′A, c = c′B − c′A.
The transformation is implemented simply as a rota-

tion about thez-axis of the systemPAxy to achieve the
coefficientc vanishes. Finally the function (5) becomes
having the form

q(x, y) = Px2 + Qy2 (6)

with the additional condition0 < P ≤ Q.

3 The Hertz Model
According to the known technique [Landau, Lifshitz,

1999] to compute the total normal force at the contact
we have to solve the system

FD

π

∞∫

0

dξ√
(α + ξ)(β + ξ)ξ

= h,

FD

π

∞∫

0

dξ

(α + ξ)
√

(α + ξ)(β + ξ)ξ
= P, (7)

FD

π

∞∫

0

dξ

(β + ξ)
√

(α + ξ)(β + ξ)ξ
= Q,

of three transcendental equations provided the coeffi-
cientsP , Q from the representation (6) and depth of
mutual penetration, so-called mutual approach,h =
|rPB

− rPA
| are already have been computed. The sys-

tem (7) has three unknown variables:α, β, F , where
the valuesα, β are the semi-major axes squared of the
contact spot ellipse, andF is the total normal elastic
force really distributed over the contact area. The pa-
rameterD summarizing elastic properties of the con-
tacting bodies depends on: Poisson’s ratiosνA, νB and
Young’s moduliEA, EB .
Using the substitutionξ 7→ η (ξ = λη) in elliptic in-

tegrals of (7) we can separate the last two equations
of (7). Indeed, introducing new scaled unknown vari-
ablesα′, β′ according to formulaeα′ = α/λ, β′ =
β/λ we can deduce the two mentioned equations to the
closed system of ones w. r. t.α′, β′ if the scaling factor
λ satisfies the norming conditionFDπ−1λ−3/2 = 1.
Furthermore, we can reduce this system of equations

to the one-dimensional transcendental equation

1
2
K(c)

(
dK(c)

dc

)−1

− (1− c) =
P

Q
(8)

w. r. t. the unknown valuec = k2 = 1 − β′/α′,
the elliptic integral modulus square. HereK(c) is the
complete elliptic integral of the first kind. As one can
clearly see we interpret the complete elliptic integrals
as a functions ofc using the work [Whittaker, Watson,
2002] as a pattern. Note that the inequalityα′ ≥ β′,
which is equivalent to the conditionP ≤ Q, satisfied
above. As one can see here the valuek actually has a
geometric sense exactly of the contact spot ellipse ec-
centricity.
Once the solution of the equation (8) had been found

we can obtain immediately the values

α′ =
(

4
Q

dK(c)
dc

)2/3

, β′ = α′(1− c).

Using the first equation of (7) and normalizing con-
dition we then find the value of the scaling factorλ



thus arriving to the Hertz problem solution: the nor-
mal force and the contact ellipse semi-major axes val-
uesF = πD−1λ

√
λ, a =

√
λα′, b =

√
λβ′.

Nevertheless numeric implementation usually re-
quires a further reduction of the model in a manner
we already mentioned above: use preferably the dif-
ferential equations (evidently to overcome the poten-
tial problems on the DAE system index reduction stage
with a software at hand). To this end we have to remind
the known ODEs concerned the complete elliptic inte-
grals of the firstK(c) and the secondE(c) kind between
one another [Whittaker, Watson, 2002]

dK

dc
=

E− (1− c)K
2c(1− c)

,
dE

dc
=

E− K

2c
.

Furthermore, instead of (8) then we should use its dif-
ferential version

[
3

(
dK

dc

)2

− K
d2K

dc2

]
ċ = 2

(
dK

dc

)2

Ċ,

whereC = P/Q. In this way the complete integrals
become additional state variables, and simultaneously
we have yet another way to compute elliptic integrals
in dynamics, note: exclusively fast and sufficiently ac-
curate way.
One else formal issue remains unresolved yet:

whether the equation (8) has a unique solutionc? It
turns out the following analytic result takes place:

Theorem 1. For the valueC = P/Q ∈ (0, 1] the
equation (8) has exactly one solution on the setc ∈
[0, 1).

4 The Volumetric Model
Staying in frame of the traditional Hertz model and

taking into account that the expression for the normal
force has the form

Felast = −e(P, Q)h3/2,

where while changing the valueh the valuesP , Q don’t
change, we conclude the potential energy of elastic de-
formations is represented by the expression

Uelast =
2
5
e(P, Q)h5/2.

On the other hand using the volumetric approach one
can try to represent the same potential energy as fol-
lows

Uelast = f

(
b

a

)
V νSσpδ,

whereV is the volume of the bodies undeformed ma-
terial intersected,S is the area of the intersection pro-
jection onto thexy-plane of theLF , p is the perime-
ter of that projection,a, b (0 < a ≤ b) are the semi-
major axes of the contact ellipse. It turned out ifν = 2,
σ = −7/4, δ = 1/2 then the function

Velast = 0.357469
8

15π1/4 (θA + θB)
V 2p1/2

S7/4
,

differs from the exact HertzUelast by 0.5% of its value
in wide range of the contact ellipse shapes: surely for
b/a ∈ [0.1, 1]. Here

θα =
1− ν2

α

πEα
, (α = A,B).

Since in the case of the Hertz model the contact spot
is the ellipse then the valuesV , S, p are to be computed
by the expressions

V =
πh2

2
√

PQ
, S =

πh

2
√

PQ
, p =

4
√

hE(c1)√
P

,

where the elliptic integral modulus squared this time
has the expressionc1 = 1 − P/Q. Then taking into
account that

Felast = −∂Uelast

∂h
,

we get the formula for the approximate value of the
normal force at the contact

Felast = −0.357469
2

3 (θA + θB)

√
E(c1)

P 3/8Q1/8
h3/2.

(9)
Numeric experimental verification showed an applica-

tion of the above expression for the normal force indeed
causes the relative error near the value0.5% for the
contacting bodies configuration coordinates in compare
with “exact” Hertz model over long time of simulation.
Anyway to estimate with the proper quality the fatigue
processes in machines while the lifecycle simulation it
is sufficient enough to have an acceptable approxima-
tion for the contact forces because the Hertz model it-
self is surely the quasistatic approximate one for the
real processes of an elastic interaction.
The formula (9) is essentially simpler than computa-

tions in the Hertz model requiring the solution of the
transcendental equation. The volumetric algorithm pre-
sented here is more reliable than the Hertz one though
sometimes due to the differential techniques arranged
for the elliptic integrals the Hertz algorithm works even
faster than above one.



5 Examples
The procedures described above to compute the

normal force of an elastic interaction were imple-
mented on Modelica language in frame of general ap-
proach to construct the objects of mechanical con-
straint [Kosenko et al, 2006]. Strictly speaking in case
of the compliant connection the constraint itself is ab-
sent. Instead we have an elastic compliance imple-
menting the Hertz contact model. Though the general
architecture of the objects interaction conserves com-
pletely. Thus for future purpose retain the term “con-
straint”.
Note the implementation under consideration com-

putes the normal force having besides the elastic
Hertzian term the term of viscosity of the form

Fvisc = −d(h)ḣ,

whereh is the mutual approach. This latter term sup-
posed to arise due to the plasticity properties of the ma-
terial the bodies made of. It is fair natural to consider
the coefficient aṫh to depend uponh [Wensing, 1998]
since as the mutual approach increases from zero then
the contact spot area also increases from zero. There-
fore it is quite natural for the plastic resistance to in-
crease continuously from zero.
A tangent force at the contact in our case for the sim-

plicity is implemented as a regularized model of the
Coulomb friction [Kosenko, 2005]. Obviously, one can
create here even far more complicated models for the
tangent force at the contact.
The first example is one of the simplest ones to test an

implementations under examination: the contact of the
ellipsoid and the plane. The Hertz model and the volu-
metric one were compared thoroughly in frame of wide
range for different regimes of the ellipsoid motion. In
particular, the comparison has been done for the case
when bouncing over the horizontal surface, one of the
stiffest types of motion to simulate including the elastic
impacts. The two algorithms showed a high degree of
coincidence for the motions under simulation. As an
example one can observe the time dependence of the
ellipsoid altitude, when bouncing, with the Hertz case
plot, red curve, covering exactly the volumetric case
plot, blue curve, see Figure 3. In fact in this particular
instance of the simulation run the simplest case of the
ball having the radius 0.1 unit of length has been under
examination.
If we zoom in one of the impact instants, the second

from right, at the end of the simulation process then
we can observe the slight delay for the Hertz model,
see Figure 4.
The next example, the ball bearing model, is

built up using the architectural principle announced
in [Kosenko, 2005]. For definiteness the bearing was
equipped by eight balls. Each ball has two elastic con-
tacts: one with the inner ring, and one with the outer
one. In both cases when contacting the ball simultane-

Figure 3. Bouncing Mode: The Ball Center Mass Altitude

Figure 4. The Impact Instants Delay

ously rolls over the surfaces of the toroidal tubes corre-
sponding to the raceways of the inner and outer rings.
Describe in brief the specifications of the contact be-

tween the ball and one of the toroidal raceways. The
ring always supposed to be denoted as a bodyA in the
contact object of the ball bearing model, while the ball
always denoted asB. All we need to complete the con-
straint specifications is to define the functionsfA, fB .
In our case we have

fA(x, y, z) = 4R2
A

(
x2 + y2

)−(
x2 + y2 + z2 + R2

A − r2
A

)2
,

fB(x, y, z) = x2 + y2 + z2 −R2
B ,

whererA is the toroidal pipe radius,RA is the radius
of the circle being an axis of that toroidal pipe,RB is
the ball radius.
The outer and the inner rings supposed to be con-

nected rigidly with outer and inner shafts in our case,
attached one with another by the bearing. In the exam-
ple under consideration the body connected with the
outer ring rests w. r. t.AF while the body connected
to the inner ring rotates uniformly aboutz-axis ofAF
both thus performing the prescribed motion, see the an-
imation image in Figure 5.
To verify the quality of the Hertz and the volumet-

ric models implementation we compared the vectorsγ
andnA as functions of time. The computational ex-
periments showed that their coordinates coincide with
a very high accuracy. At last yet another remark: to
make the simulation even more faster, at least twice,
one can apply the simplified expression of the form

Felast = −eh3/2,



Figure 5. Animation of the Ball Bearing Model

with the constant coefficiente for the normal elastic
force at the contact [Lee et al, 2007]. But it is possible
only if the geometric properties (curvatures etc.) don’t
change while simulating the model. Moreover, for dif-
ferent cases of contacting the coefficiente would have
different values. Then its value can be computed us-
ing the numerical experiment, or even better using the
natural physical experiment. If the motion under simu-
lation is perturbed from its pure case with the constant
e then immediately its value begins change in time.

6 Conclusions
One can complete the results presented above by the

issues splitting to the several main remarks influencing
the potential directions of future work:

1. According to an experience accumulated while de-
veloping the models simulating the multibody dy-
namics one can resume the usefulness of an ap-
proach when the differential formulations proper
applied are more preferable than usual algebraic or
even transcendental ones. Mostly it is because the
DAE solvers work better, frequently it is the DAE
index reduction process, if the source system of the
model equations is prepared in the best degree to
be differentiated to reduce the index.

2. In particular, it turned out an introduction of the
ODEs system components for the elastic bod-
ies outer surfaces tracking for the contact prob-
lem conserves an accuracy and simultaneously im-
proves the reliability of the models.

3. Implementation of the complete elliptic integrals
using ODEs subsystem also was useful: the mod-
els became more reliable and fast. For instance,
the Hertz algorithm improved as described above
turned out to be even faster than the volumetric one
in case of the contact area not very far from the cir-
cular case.

4. The volumetric algorithm is more reliable and suit-
able for wide range of the contact area eccentrici-
ties simultaneously providing an accuracy of0.5%

with respect to the Hertz-point algorithm.
5. In addition, the volumetric algorithm makes it pos-

sible to implement the contact force computation
in a variety of cases far from the Hetrz model for
non-elliptic contact spots.

One can outline a broad line of the future work direc-
tions such as the development of tangent forces mod-
els more complicated, account of the lubrication at the
contact, applications to different types of appliances
with the rotary motions, or to the problems essentially
including the effects of friction when contacting.
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