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Abstract

In this paper we focus on the influence of passive ele-
ments the synchronization properties of ensembles of
coupled nonidentical oscillators. It is demonstrated
that the introduction of passive elements may lead
to both an increase or decrease of the global synchro-
nization threshold. Apart from it we show that the
steady state of the passive element is a key parame-
ter which defines how this passive element affects the
synchronization properties of the oscillatory ensem-
ble.

1 Introduction

The study of collective dynamical effects in systems
of coupled elements is one of the modern problems
of many branches of physics [1, 2]. Lately various
kinds of collective behavior have been considered in
systems with a non-homogeneous distribution of pa-
rameters [3]. However, the presence of another type
of inhomogeneity is characteristic for many real sys-
tems. In [4], for example, the role of heterogeneity
in the emergence of global oscillations in the initially
excitable medium was discussed. Such systems con-
sist of elements having essentially different dynamics,
namely, oscillatory and/or excitable and/or passive
elements. In this way, for example, the heart may be
considered as a dynamical system which is an ensem-
ble consisting of such elements [5]. The heart tissue
is composed of cells of three major types: pacemaker
cells (pacemakers), cardiomyocytes and fibroblasts,
that from the point of view of nonlinear dynamics
are oscillatory, excitable and passive elements respec-
tively. The main difference between these certain cell
types is that pacemakers are able to generate peri-
odic oscillations of electrical action potentials while
cardiomyocytes can only produce an action potential
in response to the incoming stimulus. Fibroblasts,
in turn, do not generate action potentials even in re-
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Figure 1: Dependency of the oscillation frequency ω

of the oscillatory Bonhoeffer-Van der Pol el-
ement on the parameter of the unidirectional
coupling with a passive element d for differ-
ent values of the parameter ao.

sponse to external excitation, but just relax to the
steady state.

In this paper the emphasis is put on the interac-
tion between oscillatory and passive elements. In
the heart such kind of interaction is observed in the
sino-atrial node that consists of pacemakers and fi-
broblasts. The amount of the latter cells in this re-
gion of the heart may come to 60-70% according to
the physiological experiments [6]. Apart from it, the
total number of fibroblasts can vary in time due to
the heart tissue aging processes or various kinds of
diseases. The influence of these cells on the dynam-
ics of the sino-atrial node and the heart in general
is the subject of many studies based on biological
experiments as well as numerical simulations [7]. In
these papers many evidences are presented indicat-
ing that the presence of fibroblasts may affect the
synchronization properties of cells in the sino-atrial
node, as well as deeply influence the characteristics
of wave processes in the system, e.g. action potential
conduction velocity. From the point of view of the
heart functioning this may lead to the development
of different arrhythmias. That is why the study of
dynamics of mixed ensembles of oscillatory and pas-



sive elements is an important and acute task.

Firstly, the results of simulations with Bonhoeffer-
Van der Pol oscillator are presented. Very often [4, 8]
cells of different types are described by phenomeno-
logical Bonhoeffer-Van der Pol model with different
parameters. This is the simple but usually good
enough approximation because it reproduces oscil-
latory, excitable or passive dynamics depending on
the value of parameters. And secondly, we present
the results of modeling with biophysically relevant
Luo-Rudy model of cardiac cell.

2 The Influence of passive elements on the

synchronization properties of oscillatory

ensembles

2.1 Dynamical regimes in pair: oscillatory el-

ement and passive element

In this section interaction between oscillatory and
passive Bonhoeffer-Van der Pol elements is studied.
Isolated oscillator is described by a system of two
ordinary differential equations:

ẋ = x − x3/3 − y (1)

ẏ = ε(x + a − y).

In application to biological systems, x in (1) denotes
the action potential and y plays the role of the vari-
ables describing the ionic currents flowing through
the membrane of a cell. The parameter a is the con-
trol parameter. By varying this parameter one can
observe different dynamical regimes of isolated ele-
ments: oscillatory, excitable and passive [8]. This
feature allows us to use this system as a simplified
version of biological cell model applicable to study
the main dynamical properties. For parameter range
(a < −8/3)∪ (a > 8/3) the system is passive. When
−1/3 < a < 1/3 the system is in oscillatory regime.
For all other values of parameter a the system (1)
exhibits excitable behavior.

Let us now consider a system consisting of two unidi-
rectionally coupled oscillatory and passive elements:

ẋo = xo − x3

o/3 − yo + d(xo − xp) (2)

ẏo = ε(xo + ao − yo)

ẋp = xp − x3

p/3 − yp

ẏp = ε(xp + ap − yp).

The parameters ao and ap in (2) were chosen in such
a way that the first and the second element were
in oscillatory and passive regime, respectively. The
individual frequency of the oscillatory element de-
pends on value of ao. The term d(xo − xp) describes

the unidirectional influence of the passive element on
the oscillatory one.

Fig. 1 illustrates the dependency of the oscillation
frequency ω of the first Bonhoeffer-Van der Pol el-
ement on the parameter of unidirectional coupling
with the passive element d for different values of pa-
rameter ao corresponding to different individual fre-
quencies of the oscillator.

It is clearly seen that every two curves in Fig. 1 have
an intersection point. That means that for two oscil-
latory Bonhoeffer-Van der Pol elements with initially
different individual frequencies there exists such a
coupling value d with the passive element, when the
effective frequency mismatch will equal zero. With
the further growth of d this effective frequency mis-
match increases. Thus, the influence of a passive ele-
ment changes the frequency of an oscillatory element
and therefore affects the synchronization properties
in such systems. Besides, it is worth saying that for
some critical coupling value d in this system, the ef-
fect of oscillatory death is observed, i.e. vanishing of
oscillations in the initially oscillatory element.

2.2 Synchronization of two oscillatory

Bonhoeffer-Van der Pol elements under

the influence of a passive element
Let us now proceed to the study of the influence of
a passive element on the threshold and frequency of
synchronization. Consider the system of three cou-
pled Bonhoeffer-Van der Pol elements:

ẋo1 = xo1 − x3

o1
/3 − yo1 + d1(xo2 − xo1) + d2(xp − xo1)

ẏo1 = ε(xo1 + ao1 − yo1)

ẋo2 = xo2 − x3

o2
/3 − yo2 + d1(xo1 − xo2) + d2(xp − xo2)

ẏo2 = ε(xo2 + ao2 − yo2)

ẋp = xp − x3

p/3 − yp

ẏp = ε(xp + ap − yp).

Let the first two elements be oscillatory with differ-
ent individual frequencies. To be more concrete let
us consider ao1 = 0.31, ao2 = 0.25. Coefficients d1

and d2 describe the interaction between the oscilla-
tory elements and the unidirectional impact from the
passive element on them, respectively. As far as in
this situation the limit case of unidirectional coupling
is observed, the passive element is in its steady state
xp = x∗

p. Parameter ap was chosen in simulations
such that x∗

p = 2.5.

Fig. 2(a) demonstrates the synchronization thresh-
old ds

1
tuning coupling with passive element d2. It is

seen that with an increasing influence of the passive
element on the oscillatory ones, a significant lowering
of the synchronization threshold ds

1
takes place. At

ds
1
≈ 0.11 it almost reaches zero. Then the value of

the synchronization threshold starts to increase back
again and, starting from a certain value of d2 ≈ 0.25,
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Figure 2: Influence of a passive element on the synchronization properties of two coupled Bonhoeffer-Van der Pol
oscillators: (a) dependency of the synchronization threshold ds

1 on coupling with a passive element d2;
(b) dependency of the synchronization frequency on the coupling parameter d2.

even exceeds the initial value that was observed in
the case of no coupling with passive element (d2 = 0).
Hence the introduction of a passive element may lead
to both a decrease and increase of the synchroniza-
tion threshold due to a decrease or increase of the
effective frequency mismatch between the oscillatory
elements, respectively. Notice that when the influ-
ence of the passive element is too large (d2 ? 0.28)
then the effect of oscillation death takes place.

Fig. 2(b) illustrates the dependency of the synchro-
nization frequency ωs on the parameter d2. Com-
paring this curve with the ones in Fig. 1 one can
state that the synchronization frequency increases
with growth of d2 for almost the same values of d2

when the frequency of the single element increases
with enlarging the coupling to the passive element
and vice versa. In other words the character of the
curve in Fig. 2(b) is defined mainly by the kind of
dependency of the frequency of the single oscillatory
element on the coupling with the passive element
(Fig. 1). The analytical description of these effects
is given in the following section.

3 Synchronization of cardiomyocytes under

the fibroblasts impact

In the current and all following sections, we present
results obtained using the model of cardiac cell dy-
namics. In the introduction it has already been no-
ticed that the heart consists of cells of different types.
Among them one can single out oscillatory cardiac
cells (pacemakers) and passive cardiac cells (fibrob-
lasts). Further, for convenience in description, the
biological terms pacemaker (fibroblast) and nonlin-
ear dynamics oscillatory (passive) cell are considered
as synonyms.

3.1 Cardiac cells models

In the numerical experiments, biologically relevant
models describing electrical activity of cardiac cells

were used. As a model of oscillatory cardiac cell
(pacemaker) we use the Luo-Rudy phase 1 model [9].
This is the Hodgkin-Huxley type model consisting of
eight nonlinear differential equations. The first equa-
tion describes the action potential V rate of change:

Cm

dV

dt
= −(Iion + Iext),

where V denotes the cell membrane voltage mea-
sured in millivolts, Cm = 1 µF/cm2 is the membrane
capacity. The time unit of the model is 1 millisec-
ond. Iext is a constant external electrical stimulus
and Iion is a sum of six ionic currents flowing through
the membrane:

Iion = INa + Isi + IK + IK1 + IKp + Ib,

where INa is a sodium current, Isi slow inward cal-
cium current, IK potassium current, IK1 stationary
potassium current, IKp plateau potassium current
and Ib a background current. These currents are
measured in µA/cm2 and defined by:

INa = GNa · m3hj · (V − ENa)
Isi = Gsi · df · (V − Esi(V, c))
IK = GK · xxi(V ) · (V − EK)

IK1
= GK1 · k1i(V ) · (V − EK1)

IKp
= GKp · kp(V ) · (V − EK1)

IB = Gb · (V − Eb)

Here Gq and Eq for q ∈ {Na, si,K,K1,Kp, b} de-
note respectively the maximal conductance and the
reversal potential of the corresponding ionic current.
Each of the gating variables gi ∈ {m,h, j, d, f, x},
i = 1, . . . , 6 is described by the ordinary differential
equation as follows:

ġi = αgi
(V )(1 − gi) − βgi

(V )gi.

Nonlinear functions αgi
(V ) and βgi

(V ) as well as
Esi(V, c), xi(V ), K1i(V ), Kp(V ) are fitted to the
experimental data [9]. The dynamics of the exter-
nal concentration of calcium ions is given by the first
order differential equation:

ċ = 10−4Isi(V, d, f, c) + 0.07(10−4 − c).
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Figure 3: The curves of dependency of the single pacemaker frequency on the coupling with fibroblast for the value
of resting potential of fibroblast Erest = −60mV (a) and Erest = −20mV (b).

In this system we emphasize a control parameter
Iext. The variation of this parameter allows to
change the dynamics of the isolated Luo-Rudy el-
ement from the excitable regime to the oscillatory
and vice versa. If −3.8 > Iext > −2.21 the system is
oscillatory otherwise it is excitable. Moreover differ-
ent values of Iext correspond to different individual
frequencies of the oscillatory cell.

As a model of fibroblast we use the Kohl model of a
passive cardiac cell [10]. This system is described by
the simple first order linear differential equation:

V̇F = −
1

CF

GF (VF − Erest).

The key parameter here is Erest which is the resting
potential of fibroblast that may vary in the range
from -60 to -10mV .

3.2 Fibroblast impact on the oscillatory car-

diac cell dynamics

As demonstrated in section 2.1 and 2.2 using the
Bonhoeffer-Van der Pol model, it is possible to judge
qualitatively the influence of a passive element on the
synchronization properties in oscillatory ensembles
from the character of the dependency of the single
oscillatory element frequency on the coupling with a
passive element (Fig. 1). So, in order to understand
if it is possible to obtain effects like those that were
observed in sections 2.1 and 2.2, but in case of cou-
pled cardiac cells, the dependencies of frequency of
single pacemaker on the coupling with fibroblast d
were obtained. Fig. 3(a,b) shows the curves for the
oscillatory Luo-Rudy element under unidirectional
fibroblast influence with Erest = −60mV (a) and
Erest = −20mV (b) for different values of param-
eter Iext, i.e. for different individual frequencies of
pacemaker. It is clearly seen that introduction of fi-
broblast with any resting potential within the range
Erest ∈ [−60,−20]mV leads to a decrease of the
effective frequency mismatch and increase of pace-
maker frequency. The value of Erest in this case
affects just the degree of the effects development.

Thus, analyzing the dependencies in Fig. 3 one can
suppose that it is possible to obtain synchronization
of two different oscillatory cardiac cells due to the
fibroblast impact. The numerical simulations results
confirming this fact are presented in the next section.

3.3 Synchronization of two pacemakers due to

the fibroblast

In this section the results of numerical simulations of
the system of three coupled elements are presented.
Consider two coupled pacemakers under the fibrob-
last influence. Let us also introduce three new pa-
rameters dpp, dfp, dpf denoting respectively (i) sym-
metrical diffusive coupling between oscillatory ele-
ments, (ii) the coupling directed from fibroblast to
pacemakers, (iii) the coupling directed from pace-
maker to fibroblast.

Fig. 4(a) shows the dependency of frequencies of two
pacemakers on coupling with fibroblast dfp for rest-
ing potential of fibroblast Erest = −30mV and cou-
pling parameters dpp = 0.0005, dpf = 0. Hence, we
deal with the limit case of unidirectional coupling.
The control parameters defining individual frequen-
cies are: Iext

1
= −2.3, Iext

2
= −2.4. It is seen from

the Fig. 4 that increase of coupling from fibroblasts
leads to convergence of individual pacemakers fre-
quencies and for the chosen parameters the regime
of synchronization of two pacemakers sets in starting
from some critical value dfp. With further increase
of dfp the effect of oscillation death also takes place.
Apart from it, Fig. 4(c) shows the same dependency
as one in Fig. 4(a) but for the value of fibroblast
resting potential Erest = −60mV . In these case
the regime of synchronization between pacemakers
can not be achieved because influence of fibroblast
with Erest = −60mV does not provide convergence
of individual frequencies of pacemakers. This fact
confirms that steady state of passive element (rest-
ing potential of fibroblast) is an important parameter
defining whether it is possible to obtain synchroniza-
tion or not. Thus, the results of numerical simu-
lations support the preliminary qualitative analysis
given in section 3.2.
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Figure 4: The dependency of frequencies of two pacemakers on the coupling with fibroblast for the fibroblast resting
potential is Erest = −30mV (a) and Erest = −60mV (b).

Figure 5: The topology of the studied system: two
two-dimensional lattices of 200x200 elements
located one above the other. White colored
circles denote pacemakers, gray colored cir-
cles denote fibroblasts.

3.4 Synchronization in large oscillatory en-

sembles

As far as many real systems are distributed ensem-
bles of a large number of coupled elements, in order
to demonstrate the generality of the effects obtained
earlier, we performed a set of numerical experiments
with the systems composed of a large number of oscil-
lators. The concrete topology of the studied system
is shown in Fig. 5.

This topology is two two-dimensional lattices of
200x200 elements located one above the other. The
lower lattice consists of oscillatory Luo-Rudy ele-
ments with a random distribution for the control pa-
rameter Iext

i ∈ [−2.4,−2.3] defining individual fre-
quencies of pacemakers. The upper lattice is com-
posed of identical fibroblasts with resting potential
Erest = −40mV . The coupling between the ele-
ments of each lattice is the diffusive coupling with
four nearest neighbors. The coupling between lat-
tices is organized in such a way that each element of
one lattice is coupled with five nearest elements of
the other lattice (Fig. 5). The boundary conditions
in each lattice are zero-flux. This topology is an ap-
proximation to the real sino-atrial node consisting
of mixed oscillatory and passive cells. Like it was
done earlier in section 3.3 let us introduce coupling
coefficients dpp = 0.0001, dpf = 0. The coefficient

dfp is varied. Let us also introduce a new coefficient
dff = 0.3 describing the coupling strength between
fibroblasts in the upper lattice. In the numerical ex-
periments, for each value of parameter dfp, average
oscillation frequencies of all oscillatory elements of
the lower lattice were calculated.

The results of these calculations are presented in
Fig. 6. Here the ordinate axis shows the frequen-
cies of each oscillatory element in the lower lattice
and absciss axis shows the coupling of these elements
with fibroblasts dfp. The three insets in Fig. 6 il-
lustrate the frequency distribution of the number
of oscillatory elements Nω(ω) for three fixed values
dfp ∈ {0; 0.0006; 0.005}. In other words Nω(ω∗) is
the number of pacemakers oscillating with the fre-
quency ω∗. It is seen from the figure that initially for
dfp = 0 the oscillation frequencies in the lower lat-
tice are distributed randomly and uniformly in the
range from 0.85 up to 1.03 Hz (see corresponding
inset in Fig. 6). This indicates that there is no syn-
chronization in the system. With increase of fibrob-
last impact dfp the range of the observed frequencies
significantly narrows and for dfp = 0.0006 is about
[0.99, 1.11]Hz. At the same time the significant peak
appears in the distribution Nω (inset dfp = 0.0006
in Fig. 6). Thus more elements become to oscillate
with the same frequency indicating that synchroniza-
tion starts to set in. Finally, for high enough values
of dfp the regime of complete synchronization takes
place in the system. So, for example, for dfp = 0.005
one can see that the distribution Nω is nothing but
narrow and highly peaked, corresponding to a syn-
chronization regime. Notice that with increase of the
impact from fibroblasts on pacemakers the average
frequency of oscillations also increases as it was in
the experiments in section 3.3. Apart from it, like in
the previous sections the effect of oscillatory death
can also be observed here starting from the value
d ≈ 0.005. Thus, in this section we demonstrated
the possibility of the synchronization regime onset
in the large oscillatory ensemble due to the coupling
of oscillatory elements with passive ones.
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Figure 6: Dependency of the frequency of every oscillatory element in the lower lattice on coupling with fibroblasts
dfp. Three insets present distributions of the number of oscillatory elements on frequencies Nω(ω) for
three fixed values dfp ∈ {0, 0.0006, 0.005}. One can observe that synchronization sets in with increase of
dfp.

In order to compare the obtained results with real
biological experiments one may turn, for example,
to the paper [8]. There the results of real biologi-
cal experiments with cardiac cells cultures composed
of pacemakers and fibroblasts are presented. It is
shown in [8] that with increase of coupling of pace-
makers with fibroblasts in the culture of oscillatory
cardiac cells the regime of synchronization sets in,
moreover it is accompanied with the growth of the
average oscillation frequency in the system. Thus,
the results obtained in numerical and analytical stud-
ies find their confirmation in nature.

4 Conlusions

The influence of passive elements on the synchroniza-
tion properties of oscillatory ensembles was studied.
The results were discussed in the context of cardiac
cell dynamics and compared with physiological data.
It was demonstrated that depending on the value of
steady state of the passive element (the resting po-
tential of fibroblast) one can observe decrease or in-
crease of synchronization threshold in the oscillatory
ensemble with growth of passive elements impact.
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