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Abstract
The paper is devoted to the numerical performance

evaluation of the speed-gradient algorithms, recently
developed in (Orlov et al., 2018; Orlov et al., 2019)
for controlling the energy of the sine-Gordon spatially
distributed systems with several in-domain actuators.
The influence of the level quantization of the state feed-
back control signal (possibly coupled to the time sam-
pling) on the steady-state energy error and the closed-
loop system stability is investigated in the simulation
study. The following types of quantization are taken
into account: sampling-in-time control signal quanti-
zation, the level quantization for control, continuous in
time; control signal quantization on level jointly with
time sampling; control signal transmission over the bi-
nary communication channel with time-invariant first
order coder; control signal transmission over the bi-
nary communication channel with first order coder and
time-based zooming; control signal transmission over
the binary communication channel with adaptive first-
order coder. A resulting impact on the closed-loop per-
formance in question is concluded for each type of the
quantization involved.

Key words
energy control, sine-Gordon equation, Speed-

gradient, quantization, data rate constraints

1 Introducton
Energy control is motivated by numerous applications

in physics and engineering, see [Spong, 1995; Shiri-

aev et al., 1999; Fantoni et al., 2000; Xin and Kaneda,
2005; Acosta, 2010; Garofalo and Ott, 2017; Frad-
kov et al., 2018; Tang and Zuo, 2012; Rodriguez et
al., 2001; Wang et al., 2003], for mentioning a few.
Energy harvesting [Siang et al., 2018; Leong et al.,
2018], deployment of tethered systems [Andrievsky
and Guzenko, 2014; Nikpoorparizi et al., 2018], quan-
tum control [Boussaid and Caponigro, 2013; Bonnard
et al., 2011; Mantile, 2008] are among modern appli-
cations which are relevant to energy control as well.

During the last years the energy control problem of
spatially distributed systems has been widely studied
and proper solutions have been proposed and rigor-
ously justified. In the series of papers the speed-
gradient method of [Fradkov and Pogromsky, 1998;
Fradkov, 2007; Fradkov et al., 1999] was used to de-
sign energy control algorithms for spatially distributed
systems, using the boundary control [Dolgopolik et al.,
2016; Dolgopolik et al., 2018] and distributed control
[Orlov et al., 2017b; Orlov et al., 2017a]. The authors
of [Orlov et al., 2017b] analyzed energy control prob-
lems for linear wave partial differential equation (PDE)
and nonlinear sine-Gordon PDE where the distributed
yet uniform over the space control was chosen. The
speed-gradient method for energy control of Hamilto-
nian systems was developed and justified for the above
partial differential equations (PDEs). An infinite di-
mensional version of the Krasovskii–LaSalle princi-
ple was validated for the resulting closed-loop systems.
By applying this principle, the closed-loop trajectories
were shown to either approach the desired energy level
set or converge to a system equilibrium. In [Orlov et
al., 2017a] a linear wave equation, governing 1-D (one-
dimensional) string oscillations, was considered. A
distributed control input, independently enforcing the
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underlying string over its entire spatial location, was
assumed to be available. The speed-gradient method
was developed and justified for the considered PDE
model. Capabilities of the proposed speed-gradient al-
gorithm of reaching the energy goal were supported by
numerical simulations. In [Orlov et al., 2018] an en-
ergy control of the sine-Gordon chain driven by sev-
eral in-domain actuators was considered. The speed-
gradient method was generalized to the in-domain ac-
tuation such as in [Christofides, 2001; Fridman and
Blighovsky, 2012; Fridman and Am, 2013; Pisano and
Orlov, 2017] for the purpose of pump/dissipate the
energy of the model to a desired level. This result
has been extended to control via output feedback by
means of developing the Luenberger-type spatial ob-
server, which got measurement data from the sensors,
placed within small spatial plant subdomains in [Orlov
et al., 2019].

Some important issues have not yet been analytically
studied due to nonlinearity and complexity of the sys-
tems under consideration. One of the challenging task
is to evaluate the closed-loop system performance in
the presence of external disturbances and measurement
and data transmission errors. The main aim of the pa-
per is obtaining an impression on the limitations of
the energy control for a class of nonlinear distributed-
parameter physical systems (the sine-Gordon chains)
by means of the spatially-discretized control with time
and level quantization. In the present work, a step
is made for clarifying some of the mentioned issues,
namely the effect of level quantization separately, or
jointly with a time sampling, is investigated for the con-
trol signal applied to the nonlinear chain with the state
feedback control, developed in [Orlov et al., 2018].

2 Plant Model and Problem Statement
2.1 Model of Controlled Plant
First, let us briefly recall the key points of [Orlov et

al., 2018].

The system of interest is the 1-D chain, described by
the following dissipation-free sine-Gordon PDE

xtt = κxrr − F0 sinx+ u(r, t), t > 0, (1)

where t is the time instant, r ∈ [0, 1] is the scalar spa-
tial variable, x = x(·, t) is the instant state of the sys-
tem, the parameter κ is the elasticity of the system, F0

stands for the torque gain, u(r, t) is for the manipulable
input. The PDE (1) is accompanied with the Dirichlet
boundary conditions

x(0, t) = 0, x(1, t) = 0. (2)

2.2 Sampled-in-space Actuators
The sampled-in-space actuation

u(r, t) =

m∑
i=1

bi(r)ui(t) (3)

is in play to control the sine-Gordon model (1) which
is thus representable in the form

xtt = κxrr − F0 sinx+

m∑
i=1

bi(r)ui(t), t > 0. (4)

As in [Orlov et al., 2019], the spatial domain [0, 1] is
uniformly partitioned intom = 10 subdomains [ri, ri+
hi] of lengths hi = 0.1, i = 1, . . . , 10 so that ri =
0.1(i − 1). Within each subdomain the corresponding
actuator distribution bi(r) is specified as

bi(r) =

{
1, if ri + 0.02 6 r 6 ri + 0.08,

0, otherwise,
(5)

i.e., the first and the last actuators are located in the dis-
tance 0.02 from the left and right boundaries, respec-
tively, whereas the neighboring actuators possessed a
slot of the length 0.04 between them.

2.3 Control Objective
The control objective is to pump or dissipate the en-

ergy

E(x, xt)=
1

2

1∫
0

(
x2t +kx2r+2F0

(
1−cosx

))
dr (6)

of the sine-Gordon system (1)–(3) to a prespecified
level E∗ > 0 for guaranteing the limiting relation

lim
t→∞

E
(
x(·, t), xt(·, t)

)
= E∗ (7)

on the solutions x(r, t) of the closed-loop sine-Gordon
model (1), (2).

3 Energy Control Synthesis Using State Feedack
Let us pick-up the goal functional as

V (t) =
1

2

(
E(t)− E∗

)2
. (8)

Following the speed-gradient design procedure [Frad-
kov, 2007; Fradkov et al., 1999], compute the time
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derivative of V (t) along the trajectories of system (1),
(2), provisionally assuming that u(r, t) is constant on
t. Differentiating (8) in time, integrating then the re-
sulting equality by part, and employing a consequence
xt(0, t) = xt(1, t) = 0 of the boundary condition (2)
yield [Orlov et al., 2018]

V̇ =
(
E(t)− E∗

) ∫ 1

0

u(r, t) · xt dr. (9)

The control action in [Orlov et al., 2018] is specified
in the form of a finite number of sampled-in-space ac-
tuators (3). Then V̇ reads as

V̇ =
(
E(t)− E∗

) m∑
i=1

(
ui(·)

ri+hi∫
ri

bi(r)xt dr

)
. (10)

As the second step of the speed-gradient procedure, one
should derive the gradient ∇uV̇ ∈ Rm of the resulting
expression of V̇ with respect to the control components
ui(t), i = 1, . . . ,m, thus arriving at

∇uV̇ =
(
E−E∗

) [r1+h1∫
r1

b1xt dr . . .
rm+hm∫
rm

bmxt dr

]T

.

The third step of the speed-gradient procedure is to pick
up a certain function η(x, xt) which forms an acute an-
gle with∇uV̇ , i.e., satisfies an inequality ηT∇uV̇ > 0.
In [Orlov et al., 2018], it is chosen in the form

η(·)=sign
(
E−E∗

) [r1+h1∫
r1

b1xt dr . . .
rm+hm∫
rm

bmxt dr

]T

.

According to the speed-gradient method, the control
action u(x, ẋ) = −Γη(x, ẋ, t) is then constituted with
the matrix design parameter Γ = diag{γ1, . . . , γm},
composed of positive entries γi, i = 1, . . . ,m. Sum-
marizing, the sampled-in-space actuation (3) is speci-
fied with

ui(t) = γi sign ∆E(t)

ri+hi∫
ri

bixt dr, (11)

where the energy error ∆E(t) = E∗ − E(t) is intro-
duced, i = 1, . . . ,m.
The present research deals with an energy dissipa-

tion problem, where desired energy level E∗ is set to
zero (in other words, the regulation problem is consid-
ered). In this particular case, ∆E(t) < 0, therefore

sign ∆E = −1, and control law (11) takes the follow-
ing form

ui(t) = −γi

ri+hi∫
ri

bixt dr. (12)

4 Numerical Evaluation Setup
4.1 Computational algorithm
Following the previous works [Orlov et al., 2017b;

Orlov et al., 2017a; Orlov et al., 2018], in the numerical
study, the PDE (1) is discretized in the spatial variable
r ∈ R1 by uniformly splitting the segment [0, 1] intoN
sub-intervals. The discretization step ν is introduced
as ν = 1/N . The resulting system of N − 1 ordinary
differential equations (ODEs) of the second order are
then numerically solved over a time interval [0, T ] by
applying the medium order variable step Runge–Kutta
Method [Dormand and Prince, 1980], performed with
the standard MATLAB routine ode45.
At the discretization nodes ri = i·ν, i = 1, . . . , N−1,

the second-order spatial derivatives of x(r, t) are ap-
proximately computed as

xr(ri, t) =
x(ri+1, t)− x(ri−1, t)

2ν
,

xrr(ri, t)=
x(ri+1, t)−2x(ri, t)+x(ri−1, t)

ν2
.

The boundary values x(r0, t) = x(r1, t), x(rN , t) =
x(rN−1, t) are specified according to boundary con-
ditions (2), thereby yielding the following values
x(r0, t) = x(rN , t) = 0 at the boundaries. The remain-
ing discrete values x(r1, t), . . . , x(rN−1, t) are found
by solving (N − 1) ODEs numerically.
To numerically find the values of definite integrals in

(12), the MATLAB standard routine trapz of the trape-
zoidal numerical integration are used.

4.2 System Parameters and Initial Conditions
In the simulations of the closed-loop boundary-value

problem (1)–(2), (12), the control gains were set to
γi = γ0/hi, hi = m−1, i = 1, . . . ,m with γ0 = 5
and the desired energy level was set to E∗ = 5. The
initial states were pre-specified in the form

x(r, 0) = A
(
1− cos(2πr)

)7
, xt(r, 0) = 0 (13)

with a certain “magnitude” parameter A. In the present
study, A = 0.02 is taken. Parameters of (1) were spec-
ified to κ = 0.12, F0 = 25. For avoiding consideration
of the various combinations of initial and desired en-
ergies, for certainty, the desired energy level E∗ = 0
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is taken, therefore actually, the stabilization problem is
studied in the present work. The simulation results for
various cases of the energy pumping/dissipation may
be found in the above mentioned papers [Orlov et al.,
2017b; Orlov et al., 2018; Orlov et al., 2019]. For given
parameters κ = 0.12, F0 = 25 and initial conditions
(13) with A = 0.02, initial system energy E(0) is as
E(0) = 12.47.
A reasonably high number N = 2500 was selected

for the PDEs (1) to discretize the spatial variable r and
duration of the computation time T was confined to 15.

5 Numerical Results
Below, the several sources of the errors, caused by the

discretization and time sampling are numerically stud-
ied for the system under consideration. In all of them,
discrepancy of the “ideal” control signals given by (12)
and the actual ones, denoted by ũi, i = 1, . . . , 10 is
considered as an error source in the examined system.

5.1 Sampled in Time Control Signal
5.1.1 Time Sampling Description In the case of

the control signal time sampling, controls ui(t) are cal-
culated, accordingly to (12) at the uniformly distributed
instants tk = kT0, where constant T0 is for the given
sampling interval, k = 0, 1, . . . denotes the step num-
ber (the discrete time). The resulting signals ui(tk) are
subjected to the first-order hold procedure which ex-
pands ui(tk) fixing them over the sampling intervals
[tk, tk+1). This leads to the following expression for
actuator inputs ũi, where i = 1, . . . , 10:

ũi(t) = ui(kT0), as kT0 6 t < (k + 1)T0. (14)

5.1.2 Simulation Results for Time Sampling
The simulation results in the form of the energy error
evolution ∆E(t), depending on the sampling interval
T0 ∈ {0.01, 0.05, 0.10, 0.20} are plotted on Fig. 1. The
logarithmic scale is chosen along the y-axis (for the en-
ergy error values). The corresponding values of the

steady-state relative energy error δE =
∆E(tfin)

∆E(0)
(in

percents) for various time sampling intervals T0, where
tfin = 25 stands for the simulation final time, are col-
lected in Tab. 1.
The results show that the steady-state energy error is

negligibly small at least for T0 6 0.10, but if T0 ex-
ceeds some threshold, loss of stability occurs.

Table 1. Steady-state relative energy error δE (in percents) vs.
sampling interval T0.

T0 0.01 0.05 0.10 0.20

δE,% <3.4·10−5 7.3·10−4 0.005 ∞

Table 2. Steady-state relative energy error δE (in percents) vs
quantization interval δ.

δ 0.01 0.20 0.50

δE, % 5.61 · 10−5 0.0017 0.0080

δ 1.0 2.0 5.0

δE, % 0.0281 0.1215 0.690

5.2 Level Quantization of Control Signal
5.2.1 Quantization Description In this case no

time sampling is taken into account, and it is assumed
that the control signals

ũi = δ ·
〈ui
δ

〉
, i = 1, . . . , 10 (15)

are applied to the chain which are results of the uni-
form quantization of the signals ui, i = 1, . . . , 10 with
a given quantization interval δ > 0. Hereinafter, 〈·〉 de-
notes the round function, which rounds each element
of the input signal to the nearest integer.

5.2.2 Simulation Results for Level Quantization
The simulation results in the form of the energy error
evolution ∆E(t), depending on the quanization inter-
val δ ∈ {0.01, 0.20, 0.50, 1.0, 2.0, 5.0} are plotted on
Fig. 2. The logarithmic scale is chosen along the y-axis
(for the energy error values). The plots show that the
energy tends in time to a certain steady-state value, de-
pending on the corresponding δ. In Tab. 2, the steady-
state relative energy error δE is given (in percents) for
various quantization intervals δ, where tfin = 25 stands
for the simulation final time.
One may notice that even in the worst case, the steady-

state energy error does not exceed 1%. Therefore, sim-
ulation results show that the energy is stabilized with
an affordable accuracy for the all chosen quantization
intervals.

0 5 10 15 20 25
t

-104

-102

-100

-10-2

-10-4

-10-6
 E(t)

0.01 0.05 0.10 0.20

Figure 1. Energy error ∆E(t): time histories for various values
of sampling interval T0.
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Figure 2. Energy error ∆E(t): time histories for various values
of quantization interval δ.

Table 3. Steady-state relative control error δE (in percents) vs.
quantization interval δ for T0 = 0.03.

δ 0.20 0.50 2.0

δE, % 0.00706 0.015 0.127

δ 5.0 10 –

δE, % 0.633 1.92 –

5.3 Control Signal Quantization on Level and
Time Sampling

5.3.1 Quantization and Time Sampling Descrip-
tion Consider now the case when both level quanti-
zation and the time sampling of the control signal exist
in the actuation link. The control signals

ũi(t)=δ ·
〈
ui(kT0)

δ

〉
as (k−1)T0<t6kT0,

where i = 1, . . . , 10, applied to the chain, are then
obtained by zero-order holding of the uniformly quan-
tized signals ui where constant T0 denotes the sampling
interval, k = 0, 1, . . . is for the step number (the dis-
crete time).

5.3.2 Simulation Results for Level Quantization
and Time Sampling Time histories of the energy er-
ror ∆E(t) for T0 = 0.03 and varying values of the
quantization interval δ ∈ {0.20, 0.50, 2.0, 5.0, 10} are
plotted on Fig. 3 in the logarithmic scale for the en-
ergy error values. As above, the closed-loop system
demonstrate stable performance and the steady-state er-
rors, depending on the quantization interval, occur. The

steady-state relative energy errors δE =
∆E(tfin)

∆E(0)
are

given in Tab. 3 for various quantization intervals δ and
T0 = 0.03. Table 3 shows that the steady-state error is
less than 2 for the worst case with δ = 10.
Let us now consider the dependence of the system

accuracy on sampling interval T0 for fixed value of
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Figure 3. Energy error ∆E(t): time histories with T0 = 0.03
and varying values of quantization level δ.
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Figure 4. Energy error ∆E(t): time histories for various values
of sampling time T0 and δ = 1.

Table 4. Steady-state relative controlenergy error δE (in percents)
vs. sampling time T0 for δ = 1.

T0 0.01 0.02 0.03

δE, % 0.0298 0.0319 0.0385

T0 0.04 0.05 0.06

δE, % 0.0478 0.0503 ∞

δ. Time histories of the energy error ∆E(t) are de-
picted on Fig. 4 for various values of sampling interval
T0 ∈ {0.01, 0.02, 0.03, 0.04, 0.05, 0.06} as δ = 1.
The plots of Fig. 4 show that there exists a critical

sampling time which should not be exceed to preserve
the closed-loop system stability. In the presented exam-
ple, the transients of the system have approximately the
same shape and asymptotically tend to certain steady-
state values with the exception of the case T0 = 0.06,
where the stability is lost and the process diverges. Ta-
ble 4 exibits the dependence of the steady state error
on sampling time T0 for δ = 1. As seen, the steady-
state error does not depend practically of T0 and re-
mains negligibly small before the stability is lost.
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5.4 Control Signal Transmission Over Binary
Communication Channel with Time-invariant
First Order Coder

5.4.1 Method Description In this Section, the
control signal transmission is considered over the dig-
ital communication channel subject to a limiting data
transmission rate. It should be noted that performance
limitations under constraints, imposed by a finite ca-
pacity of communication channel, are well-recognized
from the control literature, see [Nair et al., 2007; An-
drievsky et al., 2010b; Matveev and Savkin, 2009;
Matveev and Pogromsky, 2016] and the references
therein.
To begin with, consider the following memoryless

(static) binary quantizer for a certain signal y:

q(y,M) = M sign(y), (16)

where sign(·) is the signum function. Notice that given
binary quantizer, each codeword symbol contains one
bit of information. This quantizer is a part of the coder
with a memory [Nair and Evans, 2003; Liberzon, 2003;
Tatikonda and Mitter, 2004; Nair et al., 2007].
Let signal u(t) should be transmitted over the limited

capacity communication channel to the actuator. For
the first-order coder the predicted value ũ[k + 1] ≡
ũ
(
(k + 1)T0

)
is taken equal to ũ[k] ≡ ũ(kT0), see

[Tatikonda and Mitter, 2004; Fradkov et al., 2006]. In
the coders with a memory, the sequence of centroids
c[k], k = 0, 1, . . . with initial condition c[0] = 0 is
employed. At step k the coder compares the current
measured output u[k] ≡ u(kT0) with value c[k], form-
ing the deviation signal ∂u[k] = u[k]− c[k]. Then this
signal is discretized with a given quantizer range M
according to (16). Binary signal

s[k] = sign ∂u[k] (17)

is transmitted at step k over the communication channel
to the decoder. Then centroid c[k+1] is renewed by the
following update algorithm:

c[k + 1] = c[k] + q
(
∂u[k],M

)
, c[0] = 0. (18)

Equations (16)–(18) describe the coder algorithm. The
same algorithm is realized by the decoder. Namely,
the decoder calculates variable c̃[k] based on received
codeword flow similarly to s[k] and on the value of M
which is known on the receiver side.
As obtained in [Andrievsky et al., 2018], in order to

avoid the failure of the received signal ũ(t) to track the
transmitted signal u(t), the following inequality

M = αLuT0 (19)
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Figure 5. Energy error ∆E(t): time histories for the binary time-
invariant coder with various sampling time T0.

should be valid for some α > 1, whereLu = sup
t>0
|u̇(t)|

is the growth rate of the transmitted signal u(t). In
this case, the upper bound of the transmission error
sup
t>0
|u(t)− ũ(t)| does not exceed (1 + α)LuT0.

5.4.2 Simulation Results for Signal Transmis-
sion with Time-invariant First Order Coder The
closed-loop system is simulated for various values sam-
pling period T0. It is worth mentioning that for a binary
quantizer (16) the communication channel bit-rate R
(in bits per a time unit) is defined as R = 1/T0. This
relation makes it possible to calculate the demanded
communication channel capacity.
For the present study Lu = 30 has been experimen-

tally found by the simulation of the “ideal” control sys-
tem (1), (2), (6), (12) with the given initial conditions
(13). Parameter α in (19) is set to α = 1.05.
The simulation results are shown in Fig. 5, where time

histories of the energy error ∆E(t) are depicted for the
binary time-invariant coder with various sampling time
T0.
Since the transients do not tend to the steady-state val-

ues, the averaged limiting values are used to evaluate
the system accuracy. The results are summarized in
Tab. 5, where the dependence of the steady-state av-
eraged relative energy error δE on the time sampling
interval T0 and data transmission rate R = 1/T0 (in
bits per time unit) is given. These results allow one
to conclude that under a data rate less that 2.0 bits per
time unit for every control channel i = 1, . . . ,m lead
to practically acceptable energy error.
The data transmission scheme described in this sec-

tion relies upon the Lipschitz constant Lu of u(t).
Since the average rate of change for u(t) may vary on
time (for example, it differs during the transients and in
the steady-state mode, as demonstrated in [Orlov et al.,
2017b; Orlov et al., 2017a; Orlov et al., 2018; Orlov
et al., 2019]), calculation of M through this constant
by means of (19) may be too conservative, reducing
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Table 5. Steady-state averaged relative energy error δE vs. time
sampling interval T0 and data transmission rateR.

T0 0.01 0.05 0.10

R 100 20.0 10.0

δE, % 0.0026 0.0577 2.57

T0 0.20 0.50 1.00

R 5.0 2.0 1.0

δE, % 0.802 4.17 30.5

the data transmission accuracy. Therefore, when the
transient is over, the coder saturation state and conse-
quent failure of the signal transmission may be avoided
for less values of M , than are given by (19). Po-
tentially, reducing M on t makes it possible to en-
sure the asymptotical stabilization of the system. This
approach is usually realized in the so-called zooming
strategy [Brockett and Liberzon, 2000; Liberzon, 2003;
Tatikonda and Mitter, 2004; Fradkov et al., 2006; Nair
et al., 2007]. The values of M [k] may be precom-
puted (the time-based zooming), or, alternatively, cur-
rent quantized measurements may be used at each step
to update M[k] (the event-based zooming). Time-based
zooming is described and evaluated in Sec. 5.5. The
event-based zooming, in the form of the adaptive cod-
ing is considered in Sec. 5.6.

5.5 Control Signal Transmission Over the Binary
Communication Channel with First Order
Coder and Time-based Zooming

In time-varying quantizers [Brockett and Liberzon,
2000; Liberzon, 2003; Tatikonda and Mitter, 2004;
Fradkov et al., 2006; Nair et al., 2007] the range M
is updated with time and different values of M are
used at each step, M = M [k]. Using such a “zoom-
ing” strategy it is possible to increase coder accuracy
in the steady-state mode and at the same time, to pre-
vent coder saturation at the beginning of the process.
To this end, the following recursive algorithm for the
quantizer range M [k] may be employed

M [k] = (M0 −M∞)ρk +M∞, k = 0, 1, . . . , (20)

where 0 < ρ 6 1 is the decay parameter, M∞ stands
for the limit value of M [k]. M0 is the initial value of
M . Equations (16), (17), (18), (20) describe the coder
algorithm. The similar algorithm is realized by the de-
coder.

5.5.1 Simulation Results for Signal Transmission
with First Order Coder and Time-based Zooming
As above, the closed-loop system is simulated for var-
ious values sampling period T0. The coder parameters
are taken as follows M0 = αLuT0, M∞ = 0.05M0,

0 5 10 15 20 25t
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-101
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-10-1

-10-2

-10-3

0.01 0.05 0.1 0.2

 E(t)

Figure 6. Control error ∆E(t) time histories for the binary coder
with time-based zooming with various sampling time T0; s = 0.6.
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Figure 7. Energy error ∆E(t): time histories for the binary coder
with time-based zooming with various sampling time T0; s =
0.15,M∞ = 0.

ρ = exp(−sT0), where s = 0.6. The energy error
∆E(t) time histories for the binary coder with time-
based zooming with various sampling time T0 are de-
picted in Fig. 6. One may notice that for the consid-
ered system an asymptotic stabilization has not been
achieved due to non-zero value of M∞. The case of
M∞ = 0 and s = 0.15 is depicted in Fig. 7. The simu-
lation results in the form of dependence of the steady-
state averaged relative control error δE on time sam-
pling interval T0 and data transmission rate R = 1/T0
(in bits per time unit) are summarized in Tabs. 6, 7.

5.6 Control Signal Transmission Over the Binary
Communication Channel with Adaptive First-
order Coder

The following adaptive coding procedure may be
employed. It assumes adaptively changing quantizer
range M [k] depending on the current measurements,
cf. [Goodman and Gersho, 1974; Andrievsky et al.,
2010a; Gomez-Estern et al., 2011; Goodwin et al.,
2012; Andrievsky, 2013]. Range M [k] in (16)–(18) is
updated adaptively by means of the following proce-
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Table 6. Steady-state averaged relative energy error δE vs. time
sampling intervalT0 and data transmission rateR for the coder with
a time-based zooming; s = 0.6,M∞ = M0/20.

T0 0.01 0.05 0.10

R 100 20.0 10.0

δE, % 0.0273 0.2149 3.85
Table 7. Dependence of the steady-state averaged relative control
error δE on time sampling interval T0 and data transmission rateR
for the coder with a time-based zooming; s = 0.6,M∞ = 0.

T0 0.01 0.05 0.10

R 100 20.0 10.0

δE, % < 4.57 · 10−4 0.021 0.906
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Figure 8. Energy error ∆E(t): time histories for the binary adap-
tive coder withM∞ = 0 and various sampling timeT0; s = 0.6.

dure:

λ[k] = (s[k] + s[k − 1] + s[k − 2])/3,
s[−1] = 0, s[−2] = 0,

M [k + 1] = M∞ +

{
ρM [k], as |λ[k]| 6 0.5,

M [k]/ρ, otherwise,
M [0] = M0,

where M0 stands for the initial value of M [k], M∞
denotes the lower admissible bound of M .

5.6.1 Simulation Results for Signal Transmission
with First Order Adaptive Coder The closed-loop
system is simulated for various values of the sampling
period T0. The coder parameters are taken as follows
M0 = αLuT0, M∞ = 0, ρ = exp(−sT0), where
s = 0.6. The time histroies of the energy error ∆E(t)
are depicted in Fig. 8. An impression of M [k] ad-
justment along with the control action time history for
T0 = 0.1 may be obtained from the plots, shown in
Fig. 9. The simulation results show that the adaptive
coding procedure ensures the smooth transients with a
relatively high steady-state accuracy.

Figure 9. Time histories of quantizer range M(tk) (upper plot)
and control action ũ(t) (lower plot) for binary adaptive coder with
M∞ = 0 and sampling time T0 = 0.1; s = 0.6.

Table 8. Steady-state averaged relative energy error δE vs. time
sampling interval T0 and data transmission rate R binary adaptive
coder withM∞ = 0; s = 0.6.

T0 0.01 0.05 0.10

R 100 20.0 10.0

δE, % < 4.33 · 10−4 0.0577 2.57
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Figure 10. Energy error ∆E(t): time histories for the binary
adaptive coder with M∞ = 0 and various sampling time T0;
s = 0.15.

Table 9. Steady-state averaged relative energy error δE vs. time
sampling interval T0 and data transmission rate R for the binary
adaptive coder withM∞ = 0; s = 0.15.

T0 0.01 0.05 0.10

R 100 20.0 10.0

δE, % < 1.44 · 10−4 0.0343 0.257

In Tab. 8, the dependence of the steady-state averaged
relative control error δE on the time sampling interval
T0 and data transmission rate R = 1/T0 (in bits per
time unit) is presented for the adaptive coder.
The time histories of M [k] and control action u(t) are
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Figure 11. Time histories of the quantizer range M(tk) (upper
plot) and control action ũ(t) (lower plot) for binary adaptive coder
withM∞ = 0 and sampling time T0 = 0.1; s = 0.15.

shown in Fig. 11 for the system with the adaptive coder
and s = 0.15, T0 = 0.1 .

6 Conclusions
In the paper, an impression on the limitations of the

energy control for the sine-Gordon chains by means
of the spatially-discretized control with time and level
quantization is obtained. The speed-gradient-based sta-
te feedback energy control, developed in [Orlov et al.,
2018; Orlov et al., 2019], is numerically evaluated for
a sine-Gordon spatially distributed system. The closed-
loop system robustness is investigated under various
types of disturbances, caused by: sampling-in-time
control signal quantization, the level quantization for
control, continuous in time; control signal quantiza-
tion on level jointly with time sampling; control sig-
nal transmission over the binary communication chan-
nel with time-invariant first order coder; control signal
transmission over the binary communication channel
with first order coder and time-based zooming; con-
trol signal transmission over the binary communication
channel with adaptive first-order coder. The results ob-
tained demonstrate robustness of the examined regu-
lation algorithm with respect to the considered distur-
bances. The steady-state error dependence on the quan-
tization/sampling parameters is numerically evaluated
by the simulations. Particularly, it is shown that the
most critical role is played by the time sampling, which
may lead to loss of the system stability once a certain
threshold is overcome.
In the future it is planned to expand this study on the

output-feedback energy control systems of [Orlov et
al., 2019] where both the control and measurement sig-
nals may be affected by the quantization, and to eval-
uation of non-discontinuous type speed gradient con-
trol algorithms. Numerical study of robustness in the
presence of quantization disturbances and extension to
non-collocated actuation and sensing of other nonlinear
distributed parameter models, e.g., Klein-Gordon PDE

and chains [Dolgopolik et al., 2018; Kovaleva, 2016]
are among challenges to be tackled within the adopted
framevork.
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