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Abstract— This paper presents an application of the two
newly developed methods for the calculation of the periodic
solutions, resulted from a Hopf bifurcation, of a first order
time-delay system arising from laser dynamics and a single
inertial neural model with time delay. The two methods involve
easy computation only and yield estimation of the bifurcated
periodic solution with high accuracy.

I. I NTRODUCTION

Many physical systems can be modelled by delay dif-
ferential equations of the first order [1]-[5], including the
famous Ikeda system [2] and the Lang-Kobayashi system
[4]. Due to the existence of a time-delay, such systems may
exhibit complicated nonlinear dynamics. They may admit
periodic solution resulted from a Hopf bifurcation, quasi-
periodic solution resulted from secondary Hopf bifurcation
or from double-Hopf bifurcation, and even chaotic solution.
In the literature, the problem of Hopf bifurcation of time-
delay systems has been investigated intensively [6]-[9]. The
existence of a Hopf bifurcation can be determined from
linear stability analysis. As for the bifurcation direction, the
stability of the bifurcated periodic solution, the contribution
of the nonlinear terms must be taken into consideration. Due
to the Hopf bifurcation theory [6], at the vicinity of the Hopf
bifurcation, the frequency of the periodic solution is close to
that of the linearized system at the critical point. A routine
for calculating the frequency of high-order approximation
with respect to the small parameter is given in [10]. The
amplitude of the periodic solution can be estimated usually
by using the center manifold reduction plus the normal
form theory, or the singular perturbation methods that are
widely applied in nonlinear dynamics, including the method
of averaging, the Poincaré-Lindstedt method, and the method
of multiple scales. Each of the methods has advantages over
the others. For example, the center manifold reduction is
a tool with rigorous mathematics, but it involves usually a
great deal of tedious computation. The singular perturbation
methods are simpler than the center manifold reduction
from the viewpoint of computation, but they may fail for
some systems. The Poincaré-Lindstedt method works not
only in determining the amplitude but also the frequency
of the emerging periodic solution, but it does not work in
studying the stability of the solution. Recently, a method
named “pseudo-oscillator analysis” was developed in [11]
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for the Hopf bifurcation of scalar time-delayed systems. It
shows that the main features of a Hopf bifurcation of a
scalar delayed system can be determined by an artificially
generated oscillator. The method leads to easy computation
only, and gives accurate prediction on the periodic solution.
But the pseudo-oscillator analysis is not applicable to Hopf
bifurcation analysis of coupled equations with time delay(s),
to which a new iteration method is proposed in [12]. Analysis
shows that both the two methods may yield better results than
the center manifold reduction [13]. Other routines for solving
similar problems include the work of [14]. This paper aims
at introducing the two methods, on the basis of [11][12], to
calculate the periodic solution after a Hopf bifurcation of
a first order time-delay system arising from laser dynamics
and a single inertial neural model with time delay, presented
in Sections II and III respectively, and it ends up in Section
IV with a few remarks.

II. H OPFBIFURCATION OF A FIRST-ORDERSYSTEM

Consider firstly the following scalar time-delay system
arising from laser physics [1]

ẋ(t) = −(
π

2
+ ε) sin x(t− 1) (1)

where|ε| ¿ 1 is a small parameter. Eq. (1) undergoes a Hopf
bifurcation atε = 0, because (i). for smallε < 0, the solution
x = 0 of Eq. (1) is asymptotically stable; (ii). atε = 0, the
characteristic functionp(λ) := λ+(π

2 + ε)e−λ has a pair of
complex conjugate rootsλ = ±i π

2 , and the other roots of
p(λ) have negative real parts; (iii).< [

dλ
dε

]
ε=0

6= 0, where
<(z) stands for the complex conjugate ofz. The key features
in the vicinity of the Hopf bifurcation can be determined
from the following truncated equation

ẋ(t) + (
π

2
+ ε)

(
x(t− 1)− x3(t− 1)

6
+

x5(t− 1)
120

)
= 0

(2)
because Hopf bifurcation is a local property. In what follows,
three schemes will be used to find out the periodic solution.

A. The Pseudo-Oscillator Analysis [11]

The pseudo-oscillator analysis constructs firstly a pseudo-
oscillator associated with Eq. (2) as follows

ẍ +
π2

4
x(t) + φ(ẋ(t), x(t− 1)) = 0 (3)

whereφ(ẋ(t), x(t− 1)) stands for the left hand side of Eq.
(2). Near the Hopf bifurcation, thestationarysolution of Eq.
(1) has a form

x(t) = r(εt) cos(ω(ε)t+θ(εt)) = r cos(ω0t+θ)+O(ε) (4)
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Fig. 1. The time history ofx(t) of the stable periodic solution for Eq. (1)
with ε = 0.25, the two curves obtained by using numerical simulation and
by usingx(t) = 1.0742 cos( π

2
t) respectively are almost the same, where

the stepsize of the integration via Runge-Kutta method is 0.005.

as done in applications of the method of multiple scales,
wherer := r(0), θ := θ(0) for short. It means that Eq. (4)
is slightly perturbed from̈x(t) + π2

4 x(t) = 0. So one can
define an energy function

E =
1
2
ẋ2 +

π2

8
x2

and computes the power function

dE

dt

∣∣
Eq.(3)

= −φ(ẋ(t), x(t− 1)) · ẋ(t)

≈ −φ(ẋ∗(t), x∗(t− 1)) · ẋ∗(t)
where x∗(t) = r cos(π

2 t + θ) is the main part of the
bifurcated periodic solution. It follows that approximately,
the power function is periodic int with periodT = 2π

π/2 = 4,
and thus it can be replaced with the following averaged
pseudo-powerfunction

dE

dt

∣∣
Eq.(3)

≈ h(r) := − 1
T

∫ T

0

φ(ẋ∗(t), x∗(t− 1)) · ẋ∗(t)dt

Usually, the averaging technique requires

dE

dt

∣∣
Eq.(3)

≈ 0 (5)

This condition always holds if the scalingx → εx is
made, considering that Hopf bifurcation is a local property.
In applications, however, such a scaling is not necessary.
Straightforward computation gives

h(r) = (
1

1536
π2 +

1
768

επ) r6−(
1
64

π2 +
1
32

επ) r4 +
1
4
επ r2

(6)
If ε < 0, thenh(r) < 0 holds locally, so the trivial solution
x = 0 of Eq. (1) is asymptotically stable. Ifε > 0, then
x = 0 is unstable, and a bifurcated periodic solutionx(t) ≈
r0 cos(π

2 t + θ) emerges, with the amplituder0 determined
from h(r0) = 0, namely from

(
π

384
+

ε

192
) r4

0 − (
π

16
+

ε

8
) r2

0 + ε = 0 (7)

A positive rootr0 exists only if ε > 0, thus the bifurcation
is supercritical. With such ar0 (the smaller one if the fourth
order equation has two positive roots, because Hopf bifur-
cation is a local property), the emerging periodic solution is
given by

x(t) ≈ x0(t) = r0 cos(
π

2
t)

up to a shift of the phase angle. The periodic solution is
stable becauseh′(r0) < 0.

As shown in Figure 1, the pseudo-oscillator analysis yields
very accurate prediction on the emerging periodic solution,
and as shown in [11], it provides a better result than the
multiple scaling method that has been applied in [1], where
r0 = 4

√
ε/π was obtained.

B. The First Iteration Scheme [12]

The bifurcated periodic solution can also be obtained
simply by using the following iteration scheme

ẍn+1(t) = ẍn(t)− φ(ẋn(t), xn(t− 1)) (8)

for n = 0, 1, 2, · · · . Let x0(t) = r cos(π
2 t + θ) be the initial

iteration, then one has

x1(t) = x0(t) + 4
25π2

(
ε

1920 + π
3840

)
r5 sin

(
5π
2 t + 5θ

)

+ 4
π2

((
π

384 + ε
192

)
r5 − (

π
16 + ε

8

)
r3 + r ε

)
sin

(
π
2 t + θ

)

− 4
9π2

((
ε

384 + π
768

)
r5 − (

π
48 + ε

24

)
r3

)
sin

(
3π
2 t + 3θ

)

If the initial guess is good enough, then the term involving
sin

(
π
2 t + θ

)
in x1(t) should disappear, which results in

Eq. (7). Because the terms of high-order frequency inx1(t)
contributes little to the periodic solution, the approximation
x(t) ≈ x0(t) can be kept unchanged.

C. The Second Iteration Scheme [12]

The iteration method works for general time-delay sys-
tems. For simplicity, let us revisit Eq. (1) or Eq. (2). To this
end, we firstly define a linear operator (corresponding to the
bifurcation pointε = 0) L : C := C([−1, 0],R) → C and its
adjoint operatorL∗ : C∗ := C([0, 1],R) → C∗ as follows

L(φ) =
{

dφ
dθ , θ ∈ [−1, 0)
−π

2 φ(−1), θ = 0

L∗(ψ) =
{ −dψ

ds , s ∈ (0, 1]
−π

2 ψ(1), s = 0

in the sense that

(ψ, Lφ) = (L∗ψ, φ), (∀φ ∈ C, ∀ψ ∈ C∗)
with respect to the bilinear form

(ψ, φ) = ψ(0)φ(0)− π

2

∫ 0

−1

ψ(ξ + 1)φ(ξ)dξ

Then solving two eigenvalue problemsLφ = i π
2 φ, (φ ∈ C),

andL∗ψ = −i π
2 ψ, (ψ ∈ C∗), give the basis matricesΦ(θ)

andΨ(s) as follows

Φ(θ) = [sin(
π

2
θ), cos(

π

2
θ)]



Ψ(s) =
4

π2 + 4

[
π cos(π

2 s) + 2 sin(π
2 s)

2 cos(π
2 s)− π sin(π

2 s)

]

satisfying(Ψ,Φ) = I2 (the identical matrix).
Let x(t) be the solution of Eq. (2),xt(θ) := x(t+θ) ∈ C,

then it has a decomposition

xt(θ) = Φ(θ)z(t) + v(θ), z = (Ψ, xt), v ∈ Q (9)

Becausext(θ) depends ont, so doesv(θ). From the def-
inition, z can be found to satisfy the following differential
equation

ż = Ωz + Ψ(0)F (Φ(0)z + v(0),Φ(−τ)z + v(−τ), p) (10)

where

Ω =
[

0 −ω0

ω0 0

]

In addition, v is governed by a differential equation with
respect tot. Such a procedure above is also required for the
center manifold reduction.

Now, becausev is in the stable manifoldQ, any bounded
solution of v must havev = O(|ε|) as t → +∞. Conse-
quently, in the vicinity of the Hopf bifurcation,z is governed
by an ODE

ż ≈ Ωz + Ψ(0)F (Φ(0)z, Φ(−τ)z, p) (11)

Namely,z = [z1, z2]T is governed by the following ordinary
differential equation[

ż1

ż2

]
≈

[
0 −π

2
π
2 0

] [
z1

z2

]
+ η

[
π
2

]
(12)

where

η =
4(εz1 − 1

12 (π + 2ε)z3
1 + 1

240 (π + 2ε)z5
1)

π2 + 4
Taking

[z1,0, z2,0]T = [−r sin(
π

2
t + θ), r cos(

π

2
t + θ)]T

as the initial guess of the iteration, and define[
ż1,k+1

ż2,k+1

]
=

[
0 −π

2
π
2 0

] [
z1,k

z2,k

]
+ ηk

[
π
2

]
(13)

for k = 0, 1, 2 · · · , where

ηk =
4(εz1,k − 1

12 (π + 2ε)z3
1,k + 1

240 (π + 2ε)z5
1,k)

π2 + 4
then the first iteration gives

z1,1 = −r sin(
π

2
t + θ) + c1(r) cos(

π

2
t + θ) + h.f.t

z2,1 = c2(r) cos(
π

2
t + θ) + h.f.t

where h.f.t stands for high frequency terms, and

c1(r) = r((2ε+π)r4−24(2ε+π)r2+384ε)
48(π2+4)

c2(r) = r((2ε+π)r4−24(2ε+π)r2+384ε+24π3+96π)
24π(π2+4)

Here again Eq. (7) is obtained because the coefficient of
cos(π

2 t + θ) in z1,1 should be zero. In this case, the
approximation of the (stationary) periodic solution is found
to be (up to a shift of the phase angle)

x(t) ≈ Φ(0)z0(t) = r0 cos(
π

2
t) (14)

III. H OPFBIFURCATION OF A SECOND-ORDERSYSTEM

Now we consider the following time-delay system after a
Hopf bifurcation [15]

ẍ(t)+aẋ(t)+bx(t)−c (f(x(t))− hf(x(t− τ))) = 0 (15)

wheref(x) = tanh(x). The characteristic quasi-polynomial
for the trivial solutionx = 0 is

p(λ) = λ2 + aλ + b− c(1− he−λτ )

Let h be the bifurcation parameter, then a Hopf bifurcation
occurs ath = h0 only if for fixed a, b, c, τ , there is aω0 > 0
such thatp(iω0) = 0, namely

{ −ω2
0 + b− c(1− h0 cos(ω0τ)) = 0

aω0 − ch sin(ω0τ) = 0 (16)

We assume that the system admits a Hopf bifurcation at
h = h0. Because Hopf bifurcation is a local property, the
main features of the system near the Hopf bifurcation can
be determined from the approximate system

ẍ(t) + aẋ(t) + bx(t)− c (f0(x(t))− hf0(x(t− τ))) = 0
(17)

wheref0(x) = x− 1
3x3 is the third-order truncated function

of f(x) = tanhx.
The problem of Hopf bifurcation of Eq. (15) has been

investigated in [15] by means of the center manifold re-
duction and normal form theory. It has also been studied
in [16] by using the pseudo-oscillator analysis and found
that the pseudo-oscillator analysis yields better prediction
on the emerging periodic solution than the center manifold
reduction. From the viewpoint of computation, the pseudo-
oscillator analysis is really simple. In what follows, the
iteration method is applied to calculate the periodic solution.

To this end, an iterative sequence is firstly constructed:

ẍn+1(t) = −aẋn(t)−bxn(t)+c (f0(xn(t))− hf0(xn(t− τ)))
(18)

for n = 0, 1, 2, · · · . Let h be a value close toh0, and let

x0(t) = r cos(ω0t)

be the initial guess of the emerging periodic solution (up to
a shift of the phase angle), then the first iteration gives

ẍ1(t) =a rω sin(ωt) + (− c

4
r3 + r(c− b)) cos(ωt)

+
c h

4
(−4r + r3) cos(ωt− ωτ)− c

12
r3 cos(3ωt)

+
c h

12
r3 cos(3ωt− 3ωτ)

or in short

ẍ1(t) = α1(r) sin(ω0t) + α2(r) cos(ωt) + h.f.t

where the coefficientα1 reads

α1(r) = r a ω0 +
(

1
4
r3 − r

)
c h sin(ω0τ)



h
1.0 1.1 1.2 1.3 1.4 1.5

r

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fig. 2. The amplitude of the stable bifurcated periodic solution for Eq.
(15) with a = 1, b = 1.1, c = 1 andτ = 1. The solid line is the plot of
ri(h), obtained by using the iteration method, the dashed line is the plot
of rc(h), obtained by using center manifold reduction, and the dots are
obtained by using numerical integration via Runge-Kutta method with fixed
step-size 0.005.

If x0(t) is accurate enough, the term involvingsin(ω0t) in
ẍ1(t) should disappear, thus

r a ω0 +
(

1
4
r3 − r

)
c h sin(ω0τ) = 0 (19)

which is exactly the same as that obtained by means of the
pseudo-oscillator approach [16]. Eq. (19) gives the approxi-
mate amplitude as

ri = 2

√
c h sin(ω0τ)− aω0

c h sin(ω0τ)

Therefore, the bifurcated periodic solution is found to be

x(t) ≈ x0(t) = ri cos(ω0t) (20)

or refined asx(t) ≈ x1(t), up to a shift of the phase angle.
For demonstration, leta = 1, b = 1.1, c = 1 and τ = 1,

then the system undergoes a Hopf bifurcation ath0 = 1.1496
for which p(λ) has exactly one pair of simple rootsλ =
± iω0 with ω0 = 0.9017. On the basis of center manifold
reduction and normal form theory, the governing equation
for the amplituder is obtained as following

ṙ = (h− h0)K1r + K2r
3 + h.o.t

where h.o.t stands for higher order terms,K1 = 0.2627
and K2 = −0.3408. Hence the amplitude of the emerging
periodic solution is found approximately to be

rc =

√
K1(h0 − h)

K2
≈

√
0.7708(h− h0)

As shown in Figure 2,rc gives much poor prediction on
the amplitude of the periodic solution thanri. The latter is
in very good agreement with numerical simulation at the
vicinity of the Hopf bifurcation.

If τ is taken as the bifurcation parameter, then similar
results can be obtained. Here again, the iteration method

gives better estimation of the periodic solution than the center
manifold reduction.

IV. CONCLUSIONS

The problem of Hopf bifurcation is an ‘Old Problem’ in
nonlinear dynamics and has been investigated intensively in
the literature. This paper is an application of two newly
developed methods, the pseudo-oscillator analysis and the
iteration method, for calculating the periodic solutions re-
sulted from a Hopf bifurcation. The two new methods are
easy computational tractable and can produce better estima-
tion of the emerging periodic solutions than the available
methods such as the multiple scaling method and the center
manifold reduction. Though the two methods are originally
developed for delay differential equations, they work actually
for ordinary differential equations [12]. On the other hand,
as pointed out in [11][12], both the two methods may fail for
some systems with or without time delays, while the center
manifold reduction works for general systems near a Hopf
bifurcation with or without time delays.
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