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Abstract
The paper presents a small signal stability analysis for

power systems with wind farm interaction. Power sys-
tems have damping oscillation modes that can be ex-
cited by disturbance or fault in the grid. The power con-
verters of the wind farms can be used to reduce these
oscillations and make the system more stable. These
ideas are explored to design a power system stabilized
(PSS) for a network with conventional generators and a
wind farm in order to increase the damping of the oscil-
lation modes. The proposed stabilizer is evaluated by
simulation using DigSilent PowerFactory r.
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1 Introduction
The rapid increment of wind power generation is

modifying the power system behavior. As conse-
quence, power system stability concepts have returned
to the first line of research. A power system is defined
as the set of generation plants, transmission lines and
distribution systems, which are needed for electricity
systems. In particular, the paper focuses its study
on generation power plants, mainly on wind power
generation.Several studies have been developed to
know if wind power generation is capable of improv-
ing the power system stability, and more specifically
of increasing the damping of the system [Caliao,
Ramtharan, Ekanayake and Jenkins, 2010].
First, it is important to remark that wind power by
itself does not induce new oscillatory modes, because
the generator concepts used in wind turbines do not
engage in power system oscillations. For example,
squirrel cage induction generator connected directly
to the grid has intrinsically more damped oscillation
modes[Slootweg and Kling, 2003]. Generators of the
variable speed wind turbines are decoupled from the

grid by a power converter [Slootweg and Kling, 2003].
In a stability analysis it is important to define where
the wind farm is located, what generator technology
is used, and how strong is the power system where
the wind farm is connected. The impact of wind
generation under different voltage levels or in various
penetration percents can cause a poor behavior of the
power system [Thakur and Mithulananthan; Eping,
Stenzel, Pöller and Müller, 2005].
A squirrel cage induction generator connected directly
to the grid helps to enhance the stability of the
system [Sumper, Gomis-Bellmunt, Sudria-Andreu,
Villafafila-Robles and Rull-Duran, 2009]. However,
the contribution to the stability is limited. On the
other hand, the variable speed wind turbines have a
power converter which is controlled to deliver to the
grid the desired active and reactive power [Gomis-
Bellmunt, Junyent-Ferré, Sumper and Bergas-Jané,
2008]. Thus, the use of variable speed wind turbine
has been suggested to make support to the grid due to
its capability of the power regulation [Martinez, Joos
and Ooi, 2009]. In this schemes, the control demands
to the wind turbine a variation on the power delivery.
This power variation modifies the power flow of the
whole power system in order to damp the desired
oscillation modes [Miao, Fan, Osborn and Yuvarajan,
2009; Hughes, Anaya-Lara, Jenkins and Strbac, 2006].

The aim of the paper is to propose a power control
for wind turbines to damp the power system oscillation
modes. This paper is organized as follows. In section
II, an overview of power system stability concepts
is introduced and the mathematical basis of small
signal stability analysis are presented. Power system
Stabilizer design is presented in section III. An exam-
ple of power system with a wind farm is simulated
and discussed in section IV. Finally, in section V, the
conclusions are summarized.



2 Power System Stability
Power system stability can be defined as the ability

to remain in equilibrium during normal operating
conditions and to regain an acceptable equilibrium
after being subjected to a physical disturbance with
most system variables bounded [Kundur, Paserba and
Vitet, 2003; Anderson and Fouad, 1977].
The stability responses of a power system can be
classified as [Kundur, 2007]:

- Rotor angle stability, which is concerned with
the ability of each interconnected synchronous
machine of the power system to maintain or re-
store the equilibrium between the electromagnetic
torque and the mechanical torque.

- Frequency stability, it is related with the capability
of a power system to restore the balance between
the system generation and the load, with minimum
loss of load.

- Voltage stability, which is dependent on the
capability of a power system to hold on in steady
state, the voltages of all buses in the system
under normal operating conditions and after a
disturbance.

Depending on the fault, rotor angle stability is divided
in two different groups as transient stability and
small signal stability. A power system under a small
disturbance is considered in small signal stability. A
small disturbance can be, for example, minor changes
in load or in generation on the power system. This
paper is interested in small signal stability analysis.
Study of small-signal stability may result in two
different response modes such as non-oscillatory or
aperiodic mode due to lack of synchronizing torque,
and oscillatory mode due to lack of damping torque.
The aperiodic problem has been largely solved by the
use of automatic voltage regulators (AVR) into the
generators. Oscillation modes are usually canceled by
means of Power System Stabilizers (PSS).
Oscillatory small-signal stability problems which
must be taken into account are inter-area modes with
frequency ranging from 0.1 to 0.7 Hz and local modes
in the range from 0.7 to 2 Hz [IEEE/CIGRE Join Task
Force, 2004; Basler and Schaefer, 2008].

2.1 Small Signal Stability
Power Systems are a non-linear dynamic systems usu-

ally described by a set of non-linear differential equa-
tions together with a set of algebraic equations, i.e.,

ẋ = f(x, u)
y = g(x, u)

(1)

where x=[x1, x2, . . ., xn]T is the vector of the state
variables, u=[u1, u2, . . ., um]T is the vector of the
system inputs, y=[y1, y2, . . ., yr]T is the vector of the
system outputs, and f=[f1(x,u), f2(x,u), . . ., fn(x,u)]T

and g=[g1(x,u), g2(x,u), . . ., gn(x,u)]T are the vectors
of non linear functions.
The differential equations come from the application
of electrical laws to the generic electrical power
system of a n-machine system which is represented
in Figure 1. The transmission system is represented
as a matrix using the node method, assuming it as
a passive system. The loads connected between the
network system and the neutral node are represented
in the right side of the transmission system. The black
circle represents the set of dynamic loads such as
polynomial or ZIP model, exponential load model,
piecewise approximation and frequency-dependent
load model [Machowski, Bialek and Bumby, 2008].
The black rectangle represents the loads supposed
static. They can be assumed static and thus represented
as a constant admittances.
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Figure 1. Representation of n-machines system

The transmission system including the static loads can
be written as:

(I) = (Y )(E) (2)

where (I) is the current vector, (E) is the voltage of the
generators vector, and (Y) is the admittance matrix.
The diagonal elements Yii and the non-diagonal
elements Yij of the admittance matrix, which can be
defined as,

Yii = Gii + jBii
Yij = Gij + jBij

(3)



The electrical power injected into the network at node
i, which is the electrical power output of the generator
i, is described as:

Si = Pei + j ·Qei (4)

where

Pei =

n∑
j=1

EiEj [Bijsin(δi − δj)+

+Gijcos(δi − δj)]

Qei =

n∑
j=1

EiEj [Gijsin(δi − δj)−

−Bijcos(δi − δj)]
i = 1, 2, ..., n

(5)

The generator equations of motion are given by:

2Hi

ωref

dωi
dt

+Diωi = Pmi − Pei

dδi
dt

= ωi − ωref i = 1, 2, ..., n

(6)

The set of equations (5) and (6) is a set of n-coupled
nonlinear second-order differential equations. Adding
to these equations the electrical equations correspon-
dent to the generators, the system described by (1) can
be obtained. A deeper description about the system
equations can be found in [Anderson and Fouad, 1977].
Since the small disturbance are considered, it is appro-
priate to linearize the system (1) around an operating
point. Then, the power system can be written as a typi-
cal linear system.

∆ẋ = A∆x+B∆u
∆y = C∆x+D∆u

(7)

where, ∆ denotes a small variation from the operating
point, A is the state matrix, B the input matrix, C the
output coefficient matrix, and D is a matrix describing
the direct connection between the input and the output.
The eigenvalues of the A matrix can be calculated to
analyze the stability of the system (7). The eigenvalues
are the roots of the system characteristic equation
det(sI − A) where det is the determinant. Then,
according to Lyapunov’s first method, the small signal
stability of a nonlinear dynamic system is given by
the roots of the characteristic equation [Kundur, 1994;
Gallardo, 2009]. The eigenvalues are described as:

λ = σ ± j · ω (8)

The eigenvalues of the state matrix can indicate the
system response in the following form:

1. When σ < 0 ∀ λ , the system is asymptotically
stable

2. When at least one of the eigenvalues has σ > 0, the
system is unstable

3. When ω 6= 0 , the system has a oscillatory response
4. When ω = 0, the system has a non oscillatory re-

sponse

Therefore, from the evaluation of the eigenvalues it can
be easily determined if the system is stable or unstable
and also if the power system may present any type of
oscillation.
Moreover, the damping ratio

(
ξ = −σ√

σ2+ω2

)
permits

to state how damped are the system oscillation modes.

3 PSS Design
The main function of power system stabilizer is to

damp low frequency oscillations. This control device
is designed to extend stability limits modulating the
generator excitation. These oscillations typically occur
in the frequency range of approximately 0.1 to 2.5 Hz,
such modes are known as inter-area or local modes
[Larsen and Swann, 1981].
Commonly, a PSS consists of four blocks as Figure
2 shows. The block Tm is the transducer emulator,
the block Tw is the high pass filter, the block Tph is
the phase compensator and the last block is the output
limiter.

The PSS input can be any signal affected by the
oscillations of the synchronous machines. However,
it is normally used the machine speed, the terminal
frequency or the power. The output signal is usually a
voltage variation in the excitation system.
The Tm block is the transducer emulator and models
the delay effect introduced by the sensor.

Tm(s) =
1

1 + sτm
(9)

where the time constant τm, mainly in Europe, is set in
20ms.
This block can be usually neglected in order to reduce
calculations.
The block Tw is a high pass filter that rejects the
low frequencies of the input. The PSS is expected to
respond only to transient changes.

Tw(s) =
sτwh

1 + sτwh
(10)

The selection of the Washout time constant value (τwh)
depends on the type of modes under study, p.e if τwh



is set at 4s, the system filters everything lower than
0.04Hz.
The dynamic compensator Tph consists of a constant
gain and a phase compensator. It provides the desired
lead or lag phase; in order to reduce rotor oscillations.
This dynamic compensator is usually made up of two
lead-lag stages.

Tph(s) =
KPSS(1 + sτ1)(1 + sτ3)

(1 + sτ2)(1 + sτ4)
(11)

The gain (KPSS) determines the amount of damping
introduced by the PSS. The time constants are selected
in order to provide a phase lead in frequencies of inter-
est.
Finally, the limiter is included to prevent the output sig-
nal of the PSS from exceeding the excitation system.
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Figure 2. PSS basic scheme

3.1 PSS for Wind Turbine
To design the power system stabilizer control for wind

turbine, it must be taken into account that wind power
does not introduce new oscillation modes to the power
system. Moreover, if the wind farm is connected into
the grid too far from synchronous generators, it is not
possible to attenuate local modes in the synchronous
generators. Therefore, it is interesting to have a good
knowledge about the power system under study and
determine which rank of inter-area modes can be
corrected.
The design of the control for wind turbines is based
in the power system stabilizer scheme previously
presented. However, the inputs and the outputs can
be different. As it is previously mentioned, the input
can be any signal affected by the oscillation. This fact
implies the selection of the point common coupling
(PCC) as measurement point, in order to avoid the
filtering effect introduced by the transformer which is
connected between the grid and the wind farm. The
output can be any variable capable of varying the
power delivered to the grid such as the active or reac-
tive power, the generator slip or the excitation voltage.
Actually, the PSS introduces small variations referred
to the nominal values of the previously mentioned

values.

4 Power System Simulation
The power system under study is a 4-bus system as

it can be seen in the figure 3. In the bus 1, one
synchronous generator and one load are connected.
The synchronous machine generates 150 MW of ac-
tive power, and the load consumes 60 MW of active
power and 20 Mvar of reactive power. One load is con-
nected to the bus 2 in which active and reactive power
consumption is 100 MW and 60 Mvar, respectively. In
the bus 3, one synchronous generator and one load are
added. Although, in this case, the generator delivers 40
MW of active power to the grid, and the load uses 45
MW of active power and 20 Mvar of reactive power.
A wind farm is coupled to the bus 4 which generates
60 MW of active power, simulating 30 variable speed
wind turbines. Finally, the slim lines in figure 3 rep-
resent the connection lines between the buses. All of
them, are defined as a line with a 100 km of length and
0.153 + j·2π50·0.397887 Ω/km.
The system have been analyzed in four different case
studies. First, is analyzed the grid without PSS com-
pensation under initial conditions and under faulty con-
ditions. Then, the system with PSS is studied under
both conditions. The fault is simulated as a reduction
of the active power on one load.
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Figure 3. Power system under study

The PSS control applied to the wind farm uses the point
common coupling (PCC) voltage as input and as output
the active power reference.
The PSS is presented in the figure 4, the transducer
block has not been included in this case. The time



constant Tw of the washout filter has been set 2 sec-
onds. With this value, the filter allows to pass signals
of frequencies higher than 0.08Hz, since the inter-area
modes are in the range from 0.1 Hz to 0.7 Hz.
Tph is implemented as a gain and one phase lead stage.
The gain constantKPSS has been set in 5, and the time
constants T1 and T2 are 0.5 and 1.5 seconds, respec-
tively. With these parameters, the phase lead is intro-
duced in the frequency ranging between 0.1 and 0.3 Hz.
Finally, the limiter is also included to limit the output
signal between -0.05 and 0.05, ( the values in per unit
(p.u.)).
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Figure 4. PSS control for wind turbines used in simulation

4.1 Simulation without PSS
First, the system has been simulated without power

system stabilizer in the wind farm to determine stabil-
ity characteristic and the number of oscillation modes.
This study case is analyzed in two different situations,
as it has been explained before.

Pre-Fault The eigenvalues analysis of the power sys-
tem under initial conditions produces the values show
in table 1. These oscillatory modes have been plotted
in figure 5. It can be seen that the power system has
two inter-area oscillation modes ( modes 5 and 6) at
the frequencies 0.358 and 0.104 Hz. The system has
also two local modes, mode 3 and mode 4 are caused
by the two synchronous machines. There are also two
modes associated to the control.
In table 1, it can be observed that the real parts of all
the eigenvalues have a negative value. Therefore, the
system is stable. However, some eigenvalues are too
close to the imaginary axis, and consequently the sys-
tem may become unstable.

Post-Fault When a power demand variation occurs
in the system, the dynamics is altered. In this situation,
the eigenvalue analysis produces the values shown in
table 2. These eigenvalues are also plotted in figure 6.
Comparing the oscillation modes between table 1 and
table 2, it can be observed that the oscillation mode

ωd (Hz) ξ

Mode 1 6.481193 0.8194126

Mode 2 2.215764 0.03989288

Mode 3 1.735506 0.9751064

Mode 4 1.649494 0.0923488

Mode 5 0.3579988 0.9985647

Mode 6 0.1040641 0.8884763

Eigenvalues

Mode 1 -58.21409 ± 40.72254

Mode 2 -0.5558333 ± 13.92205

Mode 3 -47.95331 ± 10.90451

Mode 4 -0.9612181 ± 10.36407

Mode 5 -41.93748 ± 2.249373

Mode 6 -1.265865 ± 0.6538542

Table 1. Most relevant oscillatory modes on initial conditions and
without PSS

-7,0000-24,000-41,000-58,000-75,000 Neg. Damping [1/s]

6,4812

5,2009

3,9205

2,6402

1,3599

Damped Frequency [Hz]

Stable Eigenvalues
Unstable Eigenvalues

DIGSILENT DFIG Wind Farm 60MW Eigenvalue Plot
    

  Date:  12/9/2010 

  Annex: 1 /7

D
Ig

SI
LE

N
T

Figure 5. Representation of the oscillation modes without PSS and
on initial conditions

5 in table 1 has been banished due to the new power
flow. The control mode 1 has increased its oscillation
frequency. Again, the system is stable moreover the
eigenvalues a little farther from the zero axis than in
the former scenario.
Both situations are expected due to the reduction of the
load demand cutting down the system stress.

4.2 Simulation with PSS
In order to evaluate the PSS the system is analyzed in

the previously mentioned scenarios.



ωd (Hz) ξ

Mode 1 9.272294 0.7500609

Mode 2 2.215711 0.04199555

Mode 3 1.764306 0.9616387

Mode 4 1.512812 0.08815949

Mode 5 0.1110638 0.882172

Eigenvalues

Mode 1 -66.07236 ± 58.25954

Mode 2 -0.5851666 ± 13.93402

Mode 3 -38.8606 ± 11.08546

Mode 4 -0.8412562 ± 9.50528

Mode 5 -1.307229 ± 0.6978342

Table 2. Most relevant oscillatory modes under faulty conditions
and without PSS

-7,0000-24,000-41,000-58,000-75,000 Neg. Damping [1/s]

6,4360

5,1642

3,8923

2,6205

1,3487

Damped Frequency [Hz]

Stable Eigenvalues
Unstable Eigenvalues

DIGSILENT DFIG Wind Farm 60MW Eigenvalue Plot(1)
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Figure 6. Representation of the oscillation modes without PSS and
under faulty conditions

Pre-Fault Analyzing the oscillation modes of the ta-
ble 3, it can be seen that the power system stabilizer has
filtered the inter-area oscillation mode 6 as expected,
since this mode is in the attenuation band [0.1-0.3Hz]
of the PSS. The rest of the oscillation modes remain
approximately without changes.

Post-Fault The eigenvalues for this case are listed in
table 4. It can be seen that none inter-area oscillation
mode remains. One inter-area mode has been filtered
by the PSS control as in the previous case. Whereas
the other one has been banished due to the new power
flow. It is also interesting to notice that, in this scenario,
the frequency of the oscillation modes associated to the
control has not increased as it occurs in the same sce-
nario but without PSS.
Comparing the eigenvalues in table 4 with the eigen-

ωd (Hz) ξ

Mode 1 6.486656 0.8189943

Mode 2 2.167168 0.06070393

Mode 3 1.728199 0.9752866

Mode 4 1.654551 0.08615576

Mode 5 0.3598029 0.9985495

Eigenvalues

Mode 1 -58.17279 ± 40.75686

Mode 2 -0.8281157 ± 13.61672

Mode 3 -47.93193 ± 10.8586

Mode 4 -0.899005 ± 10.39585

Mode 5 -41.9275 ± 2.260709

Table 3. Most relevant oscillatory modes on initial conditions and
with PSS

-7,0000-24,000-41,000-58,000-75,000 Neg. Damping [1/s]

6,4867

5,1930

3,8994

2,6058

1,3122

Damped Frequency [Hz]

Stable Eigenvalues
Unstable Eigenvalues

DIGSILENT DFIG Wind Farm 60MW Eigenvalue Plot(2)
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Figure 7. Representation of the oscillation modes with PSS and on
initial conditions

values of those in table 2, it can be observed that in the
case with PSS the system is more stable, since the real
part of them are more negative.



ωd (Hz) ξ

Mode 1 6.342678 0.8547192

Mode 2 2.810986 0.9094618

Mode 3 2.167638 0.06341672

Mode 4 1.757189 0.09017846

Eigenvalues

Mode 1 -65.61948 ± 39.85222

Mode 2 -38.63239 ± 17.66195

Mode 3 -0.8654568 ± 13.61967

Mode 4 -0.9997108 ± 11.04075

Table 4. Most relevant oscillatory modes under faulty conditions
and with PSS

-7,0000-24,000-41,000-58,000-75,000 Neg. Damping [1/s]

6,4867

5,1930

3,8994

2,6058

1,3122

Damped Frequency [Hz]

Stable Eigenvalues
Unstable Eigenvalues

DIGSILENT DFIG Wind Farm 60MW Eigenvalue Plot(1)
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Figure 8. Representation of the oscillation modes with PSS and un-
der faulty conditions

5 Conclusion
A brief overview of the power system stability ori-

ented to the wind power integration in electrical net-
works has been presented. Wind farms may have the
potential to contribute in the stabilization of the entire
power system. To this end, PSSs are used to control the
active and reactive power injected into the grid by the
wind farms. These stabilizers can be designed using the
same ideas than in conventional generation sources. To
illustrate the application of PSSs in this context, a net-
work consisted of three synchronous generators and a
wind farm with a PSS has been analyzed. Four cases of
study show the ability of the wind farms and the PSS
to increase the damping of inter-area oscillation modes
under normal operation and under fault in the grid.
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