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Abstract
Thermally sensitive neurons present bursting activity

for certain temperature ranges, characterized by fast
repetitive spiking of action potential followed by a
short quiescent period. Synchronization of bursting ac-
tivity is possible in networks of coupled neurons, and
it is sometimes an undesirable feature. Control pro-
cedures can suppress totally or partially this collec-
tive behavior, with potential applications in deep brain
stimulation techniques. We investigate the control
of bursting synchronization in small-world networks
of Hodgkin-Huxley type thermally sensitive neurons
with chemical synapses through two different strate-
gies. One is the application of an external time-periodic
electrical signal and another consists of a time-delayed
feedback signal. We consider the effectiveness of both
strategies in terms of protocols of applications suitable
to be applied by pacemakers.
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1 Introduction
A dynamical description of a bursting neuron re-

quires the use of mathematical models possessing two
timescales: (i) a fast time scale characterized by repeti-
tive spiking; and (ii) a slow timescale with bursting ac-
tivity, where neuron activity alternates between a quies-
cent state and spiking trains. The spiking dynamics of
the action potentials can be described by the Hodgkin-
Huxley model, which is a conductance-based model of
an excitable neuron, its protein molecule ion channels
(Na+ andK+) being represented by conductances and
its lipid bilayer by a capacitor. Bursting activity in
Hodgkin-Huxley models of neuronal activity is usually
included through additional Calcium currents.
Bursting activity can be also observed in thermally

sensitive neurons: a Hodgkin-Huxley type model of

thermally sensitive neurons has been proposed by Hu-
ber and Braun [Braun et al. 1998, 1999, 2000, 2001],
which describes spike train patterns experimentally ob-
served in facial cold receptors and hypothalamic neu-
rons of the rat [Braun et al., 1999], electro-receptors
organs of freshwater catfish [Schäfer et al., 1995], and
caudal photo-receptor of the crayfish [Feudel et al.,
2000].

2 The model
A computational model of a neural network consists

on a network architecture, which specifies how neu-
rons are connected, and a neuronal dynamics attached
to each unit, or node. The connections among neurons
(of electrical or chemical nature) are the links of this
network.

2.1 Neuronal dynamics
The main dynamical variable for the ith neuron, be-

longing to a given network with i = 1, 2, . . . N , is the
membrane potential Vi, whose time evolution is influ-
enced by a number of currents from different sources,
in the form (the membrane potential is measured inmV
and time in ms):

CM
dVi
dt

= −IiNa − IiK − Iisd − Iisa − Ii`, (1)

where CM is the membrane capacitance. IiNa, IiK ,
and Ii` are, respectively, the Na+ and K+ ionic cur-
rents and the leak current, like in the Hodgkin-Huxley
model (currents, or rather, current densities, are mea-
sured in µA/cm2). The currents Iisd and Iisa refer to
intrinsic sub-threshold oscillations: Iisd to the intrinsic
membrane depolarization current, and Iisa to the repo-
larization oscillations. We associate a given conduc-
tance (measured in mS/cm2) to each current, in the



following form

IiNa = ρgNaaNa(Vi − VNa), (2)
IiK = ρgKaK(Vi − VK), (3)
Iisd = ρgsdasd(Vi − Vsd), (4)
Iisa = ρgsaasa(Vi − Vsa), (5)
Ii` = g`(Vi − V`), (6)

where gNa, gK , gsd, gsa, g` are the maximal conduc-
tances, and the reversal (Nernst) potentials for each
ionic current are denoted by VNa, VK , Vsd, and Vsa.
It turns out that INa and IK are simplified fast

Hodgkin-Huxley currents representing Na+ and K+

channels, respectively. These fast currents are respon-
sible for spike generation [6]. Isd and Isa are slow cur-
rents which are responsible for subthrehold activation,
i.e., they activate more slowly at lower membrane po-
tentials. These slow currents are necessary to generate
bursting behavior.
We would like to remark that Isd represents a

generic voltage-gated Ca2+ channel and Isa a cur-
rent with behavior reminiscent of SK-channels. How-
ever, while real SK-channels are Ca2+-sensitive rather
than voltage-sensitive, the combination of Isa and
Isd present in this model yields a behavior similar
to voltage-gated Ca2+ channels coupled with SK-
channels. This procedure of replacing a ion-sensitive
to a voltage-gated channel is common in biophysical
models of neurons: for example the inactivation of fast
Na+ channels is not really voltage-gated, but it is mod-
eled this way in many models of neuronal dynamics.
Hence this model represents SK channels as voltage-
sensitive, as Isa reasonably behaves like SK without
the need for keeping track of intracellular Ca2+.
For thermally sensitive neurons ρ is a scale factor de-

pending on the temperature T which, for the kinetic ion

model, is ρ = ρ
(T−T0)
τ0

0 , where ρ0, T0 and τ0 are param-
eters.
The activation currents aNa, aK , asd, and asa have

their evolution described by the following differential
equations

daNa

dt
=

φ

τNa
(aNa,∞ − aNa), (7)

daK
dt

=
φ

τK
(aK,∞ − aK), (8)

dasd
dt

=
φ

τsd
(asd,∞ − asd), (9)

dasa
dt

=
φ

τsa
(−ηIisd − γasa), (10)

where τNa, τK , τsd and τsa are characteristic times
and η and γ other parameters, and we define a second

temperature-dependent scale factor φ = φ
(T−T0)
τ0

0 . Any
inactivation of the ionic channels are neglected [1]. The

factor η serves for increasing Ca2+ concentration fol-
lowing Isa, and γ accounts for active elimination of
intracellular Ca2+.
The activation functions in the stable state, namely
aNa,∞, aK,∞, asd,∞, are related to the membrane po-
tential by sigmoid functions:

aNa,∞ =
1

1 + exp[−sNa(Vi − V0Na)]
, (11)

aK,∞ =
1

1 + exp[−sK(Vi − V0K)]
, (12)

asd,∞ =
1

1 + exp[−ssd(Vi − V0sd)]
, (13)

where sNa, sK , and ssd are constants and V0Na, V0K ,
and V0sd are activation voltages. The parameter val-
ues to be used in this paper are found in [Batista et al.,
2013]. The temperature we use in numerical simula-
tions is T = 8.0oC, for which we find bursting behav-
ior characterized by repetitive spiking for which the in-
terspike interval (ISI) exhibits a chaotic evolution, fol-
lowed by a quiescent regime.

2.2 Synaptic coupling
It is known that, in real neural networks, neurons are

neither completely nor randomly connected. Studies
of connectivity of some neural networks in both the
microscopic (C. elegans) and mesoscopic (cat cortico-
cortical matrix) suggest that the networks exhibit the
so-called small-world (SW) property, since they dis-
play features of both regular and random lattices.
Here we will consider a small-world network, con-

sisting of a lattice in which each neuron has both local
and nonlocal connections. A neuron is connected to its
nearest and next-to-nearest neighbors, as well as with
a small number of randomly chosen non-local neurons.
It can be shown that the resulting network has a small
average pathlength, in the same way as random net-
works do, but still retaining an appreciable degree of
clustering, as in regular lattices.
The coupling among neurons enters in the model

through a synaptic current Isyn which is added in the
differential equation (1) governing the behavior of the
membrane potential for the ith neuron:

CM
dVi
dt

= −IiNa−IiK−Iisd−Iisa−Ii`+Isyn, (14)

where

Isyn = gc

N∑
j=1

aijrj(t)(Vsyn − Vj), (15)

with gc as a coupling strength with conductance di-
mensions, aij are the elements of the adjacency matrix
corresponding to a small-world network, Vsyn is the
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Figure 1. Time evolution of the (a) membrane potential (b) recov-
ery variable (inverse of the sub-threshold repolarization current) for
an isolated neuron at temperatureT = 8.00C . The arrows indicate
the times at which bursting cycles begin.

synaptic reverse potential, and rj(t) is the fraction of
bond receptors of the jth neuron, whose time-evolution
is described by

drj
dt

=

(
1

τr
− 1

τd

)
1− rj

1 + exp(−Vj + V0)
− rj
τd
, (16)

where Vj is the membrane potential of the post-
synaptic neuron, τr and τd are characteristic rise and
decay times, respectively, of the chemical synapse. The
numerical values of the coupling parameters to be used
in the simulations reported in this work can be found in
[Batista et al., 2013].

3 Bursting synchronization
A representative example of bursting is shown in Fig.

1(a): the membrane potential of a single neuron de-
scribed by the Huber-Braun model undergoes repetitive
spiking after periods of quiescent behavior. The begin-
ning of each outburst of repetitive spiking is also a lo-
cal maximum of the recovery variable U = 1/asa, and
may be considered as the beginning of a bursting cycle
[Fig. 1(b)]. This makes possible to define a geometric
phase. Let tk the time at which a kth bursting cycle
begins. The phase is obtained by simple interpolation
as

ϕ(t) = 2πk + 2π
t− tk

tk+1 − tk
, (tk < t < tk+1),

(17)
and increases monotonically with time.
In the numerical simulations of SW networks of ther-

mally sensitive neurons we shall use networks with

N = 2000, with shortcut probability p = 0.01 and
coupling strength gc = 0.01mS/cm2, unless stated
differently. Solving the coupled system of 5N equa-
tions (using a fourth-order Runge-Kutta method with
fixed stepsize) yields Vi(t) for each neuron, such that
we can trace its time evolution and the times tk at which
the bursting cycles occur. After a sufficiently long in-
tegration we can retrace the time series and compute,
using Eq. (17), the time evolution of the corresponding
phase.
One of the effects of coupling is to induce phase syn-

chronization of bursting: ϕ1(t) = ϕ2(t) = . . . ϕN (t),
in such a way that the coupled neurons, even though
not fully synchronized, are able to display a collec-
tive effect, bursting at the same time. The mean field
of a network of synchronized bursters displays large-
amplitude oscillations reflecting the coherent behavior
of the assembly.
Two useful numerical diagnostics of bursting syn-

chronization are the mean field of the network and
the Kuramoto’s order parameter. The former is ob-
tained by averaging the membrane voltages of all neu-
rons belonging to the network at a given time: Vm =
(1/N)

∑N
i=1 Vi. If the bursters are non-synchronized,

i.e. if they begin their bursting cycles at different times,
the corresponding mean field exhibits small-amplitude
noisy fluctuations with time. In a synchronized state,
however, the mean field time evolution displays large-
amplitude oscillations. The expected effect of the con-
trol is thus the reduction to minimal levels of the net-
work mean field.
The order parameter is defined as

z(t) = R(t) exp (iΦ(t)) ≡ 1

N

N∑
j=1

exp(iϕj(t)), (18)

where R and Φ are the amplitude and angle, respec-
tively, of a centroid phase vector for a one-dimensional
lattice with periodic boundary conditions. If the neu-
rons are uncoupled, for example, their bursting phases
ϕi(t) are expected to be uncorrelated such that their
contribution to the result of the summation in Eq. (18)
is typically small (due to statistical coincidences). In
the limit of an infinite site (N →∞) we expectR(t) to
vanish. On the other hand, in a completely phase syn-
chronized state the order parameter magnitude asymp-
totes the unity, indicating a coherent superposition of
the phase vectors at each time. We usually compute the
time averaged order parameter magnitude, which we
denote as R.
The time-averaged order parameter magnitude is plot-

ted, in Fig. 2, against the coupling strength gc, for
small-world networks with shortcut probabilities rang-
ing from zero to 0.02. When the latter parameter is
zero, the network has regular connections only, and
thus it is unlikely to display synchronized behavior, if
the coupling strength is small enough. In fact R fluctu-
ates between 0.05 and 0.40 in the coupling parameter
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Figure 2. Time-averaged order parameter magnitude as a function
of the coupling strength of small-world networks with different val-
ues of the shortcut probability p: 0.0001 (green triangles), 0.001
(red lozenges), 0.004 (black squares), 0.020 (blue circles).

range considered [green triangles in Fig. 2].

4 Control of synchronization
Inspired in techniques of deep brain stimulation, in

which an external time-periodic electric signal is ap-
plied to a cortical area to mitigate abnormal rhythms
appearing in pathological conditions, we can investi-
gate the control of bursting synchronization through:
(i) a time-periodic signal with a given amplitude and
frequency, (ii) a time-delayed feedback signal.

4.1 External time-periodic signal
A time-periodic signal applied to a given neuron can

be represented by an external injected current of ampli-
tude I0 (in µA/cm2) and frequency ω (in kHz) of the
form Iext = I0 sin(ωt), which is added to the right-
hand side of Eq. (1). In strongly coupled networks
(like globally or power-law coupled neurons) this in-
tervention can be made on a single selected neuron.
For scale-free networks, where there is a strongly con-
nected hub, the latter can be the target of the interven-
tion. In sparsely connected networks, like small-world
or random ones, it is unfeasible to randomly select a
single neuron, since it is so poorly connected that a
modification in its dynamics does not influence the net-
work in a significant way. Hence we choose to make
the intervention in all neurons. This is biologically fea-
sible since the electrodes injecting an AC current into
a given region of the brain do modify the extracellular
field potentials for a number of nearby neurons.
Figures 3(a) and 3(b) depict the time evolution of

the external driving signal Iext for ω = 8Hz, I0 =
0.10µA/cm2 and 0.15µA/cm2, respectively. In the
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Figure 3. Time evolution of the external driving signal Iext [(a)
and (b)], mean field [(c) and (d)] and order parameter magnitude [(e)
and (f)] for ω = 8Hz, I0 = 0.10µA/cm2 [(a), (c) and (e)]
and 0.15µA/cm2 [(b), (d) and (f)].

former case, the effect of the driving signal is weak,
and we observe a small reduction in the mean field am-
plitude [Fig. 3(c)] and likewise a small decrease of the
order parameter magnitude [Fig. 3(e)]. Actually the
latter undergoes low-frequency oscillations, character-
izing a kind of beat. For larger amplitude, however, the
mean field oscillation amplitudes decrease [Fig. 3(d)]
indicating that the synchronized bursting is partially
suppressed in this case. This observation is reinforced
by the behavior of the order parameter [Fig. 3(f)], al-
though with the same kind of beat.

4.2 Time-delayed feedback control
According to the value that the mean field takes on for

a given time t and its value at an earlier time τ (the
control delay) we can design a feedback signal to be
applied to the network so as to drive the system out of
a synchronized state. This is feasible if a probe is in-
serted in the network measuring the mean field at dif-
ferent times, and integrating the effect of time-delayed
values into a feedback scheme which applies to the net-
work a control signal. The latter is similar in essence
to the one studied in the previous section, but its ampli-
tude and frequency are no longer constants but instead
determined by the network dynamics itself.
Let Vm(t) and Vm(t − τ) be the neuronal mean

field measured at two times with a delay τ (mea-
sured in ms). The feedback electric signal is Ifeed =
gf [Vm(t−τ)−Vm(t)], where gf is a control amplitude
(also with conductance dimensions) which may or may
not vary during the application, according to the pro-
tocol used. The intensity of the control signal is thus
proportional to the difference between the actual mean
field and the time-delayed one.
The effect of a free-running time-delayed feedback
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Figure 4. Time evolution of the free-running time-delayed feedback
signal Ifeed [(a) and (b)], mean field [(c) and (d)], and order param-
eter magnitude [(e) and (f)] for gc = 0.01mS/cm2 [(a),(c),(e)]
and 0.015mS/cm2 [(b),(d),(f)]. In both cases τ = 2ms

signal is illustrated by Fig. 4, obtained for two different
values of gf and the same values of the time delay τ =
2ms. In Fig. 4(a) and 4(b) we plot the time evolution
of the feedback signals Ifeed for gf = 0.010mS/cm2

and 0.015mS/cm2, respectively. We observe that, af-
ter the feedback signal is switched on, the oscillations
of the mean field Vm are just slightly decreased for
gf = 0.010mS/cm2 [Fig. 4(c)] and much more di-
minished for 0.015mS/cm2 [Fig. 4(d)]. Indeed, after
the beginning of the control the order parameter mag-
nitude decreases to 0.8 in the former case [Fig. 4(e)]
and to almost zero in the latter [Fig. 4(f)].
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