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Abstract

We have derived in this paper optimal control of quantum
mechanical system with weighted energy cost function by
representing the unitary operator in terms of the projec-
tion operators of the Hamiltonian of the control system.
The admissible Hilbert space of controllers of the system
is expressed as the direct sum of the Hilbert spaces corre-
sponding to the weights of the controllers of the quantum
mechanical system. The optimal control which steers the
state of the quantum mechanical system from the initial
state to a target state, minimizing the weighted energy,
is formulated in terms of the controllability operator of
the system.

1 Introduction

Stable operation is the fundamental prerequisite for
proper functioning of any technological system [6, 7,
9]. The formulation of the quantum mechanical control
system under this circumstances is seemed to be great
challenge for the control theory. The wide perspectives
of quantum mechanics are utilized in developing a new
Emerging Field- Quantum Control System , a marriage
of quantum physics and classical control theory, with ap-
plications to various branches of modern control theory.
Quantum Control Theory is an Emerging Field with ap-
plication to Modern Technology of Quantum Computer
and Quantum Information Processing. In recent years,
much attention has been focussed in designing and de-
veloping quantum control systems in Hilbert space [1,
2, 5].The problem of generating and controlling quan-
tum beats (qbits) are important in developing high speed
quantum computer and communication system.

In a recent paper [11], an abstract function space ap-
proach to system analysis for deriving the optimal control
of multilevel quantum mechanical system with quadratic
energy constraint has been outlined. The problems of ex-
istence and uniqueness of the minimum energy control of
the system in infinite dimensional Hilbert space have been
analyzed. The present paper is concerned with the syn-
thesis of the optimal control of the quantum mechanical

system in some more explicit form and a generalization
of the abstract approach in solving the weighted energy
problem of the system.

The paper is organized as follows. In section 2, we
described the state equation of closed quantum system
and multi-level quantum control system. In section 3,
we formulated the optimal control problem. In section 4,
we gave the solution of optimal control problem and de-
scribed the minimum weighted energy control in terms of
controllability Grammian operator. In section 5, we men-
tion different directions in which our theory is applicable.
The future direction of generalization of our method is
also discussed.

2 Quantum Control System in
Hilbert Space

In modelling a quantum mechanical control system, let
us first consider the Schrödinger equation of state of a
closed quantum system.

2.1 State Equation of Closed Quantum
System

In absence of any external influence (control) the state
vector |ψ(t)⟩ of a closed quantum system changes
smoothly in time t according to the time dependent
Schrödinger equation[4]

ih̄
d

dt
|ψ(t)⟩ = H|ψ(t)⟩ (1)

where the Hamiltonian H is a self-adjoint operator in a
Hilbert space H.

The rigorous meaning of the differential equation is
that, for any vector |ϕ⟩ ∈ H, the complex function
⟨ϕ|ψ(t)⟩ satisfies the ordinary differential equation

ih̄
d

dt
⟨ϕ|ψ(t)⟩ = ⟨ϕ|H|ψ(t)⟩ (2)

Let us assume that the Hamiltonian operator H has
the discrete set of different eigenvalues {a1, a2, . . . aM}
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with am a d(m)-fold degenerate eigenvalue of H having
independent eigenvectors um1, um2, . . . umd(m). Then H
assumes the spectral representation [4, 10]

H =
M∑

m=1

d(m)∑
j=1

am|umj⟩⟨umj | =
M∑

m=1

amPm (3)

where

Pm =

d(m)∑
j=1

|umj ⟩⟨umj | (4)

is the projection operator onto the subspace of eigenvec-
tors of H with eigenvalue am.

The projection operators are pairwise orthogonal and
Pn satisfies

PnPm = δnmPn∑M
m=1 Pm = I

(5)

The equation (2) can then be written as

ih̄
d

dt
⟨ϕ|ψ(t)⟩ =

M∑
m=1

am⟨ϕ|Pm|ψ(t)⟩ (6)

Now, since equation(6) is true for all |ϕ⟩, it is true, in par-
ticular, for vector of the form Pn|χ⟩ with |χ⟩ an arbitrary
vector and hence

ih̄
d

dt
⟨χ|Pn|ψ(t)⟩ =

M∑
m=1

am⟨χ|PnPm|ψ(t)⟩ (7)

As the projectors Pn satisfy (5), the equation (7) yields
the following system of ordinary differential equations

ih̄
d

dt
⟨χ|Pn|ψ(t)⟩ = an⟨χ|Pn|ψ(t)⟩ (8)

for n = 1, 2, . . . ,M and for all |χ⟩ ∈ H.
The first order differential equation can be solved as

⟨χ|Pn|ψ(t)⟩ = e−
i
h̄an(t−t0)⟨χ|Pn|ψ(t0)⟩ (9)

Again, since I =
∑M

m=1 Pm we have

⟨χ|ψ(t)⟩ =
M∑

m=1

⟨χ|Pm|ψ(t0)⟩ (10)

From (9) and (10) we have

⟨χ|ψ(t)⟩ =
M∑

m=1

e−
i
h̄am(t−t0)⟨χ|Pm|ψ(t0)⟩ (11)

The equation(11) holds for all |χ⟩. We thus get the ex-
plicit representation of the Schrödinger equation (1) of
the state function as

|ψ(t)⟩ =
M∑

m=1

e−
i
h̄am(t−t0)Pm|ψ(t0)⟩ (12)

Applying the general theorem for an exponential func-
tion f of the operators as

f(H) =
M∑

m=1

f(am)Pm,

the state of the quantum system is represented in the
usual form

|ψ(t)⟩ = e−
i
h̄H(t−t0)|ψ(t0)⟩ (13)

with the unitary operator

U(t− t0) = e−
i
h̄H(t−t0) (14)

2.2 State Space Representation of Quan-
tum Mechanical Control System

Consider the forced (controlled) system represented by
the state equation in Hilbert space L2(ICn)

ih̄
d

dt
|ψ(t)⟩ = HA|ψ(t)⟩+ ih̄B|u(t)⟩ (15)

where the Hamiltonian operators HA and B are taken to
be matrices of dimensions n× n and n×m respectively.

The matrix representation of the Hamiltonian operator
has impact on quantum mechanics that solves quite suc-
cessfully the basic problem of quantum system. A practi-
cal problem is afforded by the famous Pauli spin matrices
[4], which should be regarded as the matrix representa-
tions of electron spin operators acting on two dimensional
vector space IC2 or Hilbert space L2(IC2). The operator B
is used for distributing the input(control) signal. For ex-
ample, the beam splitter is a quantum device and is used
for distributing the optical (input) signal to QED system.
Then the multi-level quantum system(15) may be viewed
as the classical analogue of multi-variable control system.

Utilizing the rigorous treatment made in the previous
subsection and applying the classical variational princi-
ple, the state vector of the quantum dynamical system
(15) can be represented in the form as

|ψ(t)⟩ = U(t− t0)|ψ(t0⟩+
∫ t

t0

U(t− τ)B|u(τ)⟩dτ (16)

where U is the unitary matrix operator corresponding to
the Hamiltonian HA.

Using the general formula (14) of the unitary operator
we now represent the control system (16) in the following
suitable form.

Let us assume, for simplicity, that d(m) = 1. That
is, the eigenvalues a1, a2, . . . an of the system matrix op-
erator HA are distinct. Then the adjoint of the unitary
operator U(t) assumes the representation

U+(t) =
n∑

r=1

e
i
h̄artPr =

n∑
r=1

gr(t)Pr (17)

with gr(t) = e
i
h̄art, n = 1, 2, . . . n.
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Then the system state is given by taking t0 = 0 with
initial state |ψ(0)⟩,

|ψ(t)⟩ = U(t){|ψ(0)⟩+
∫ t

0

∑n
r=1 gr(τ)PrB|u(τ)⟩dτ}

= U(t){|ψ(0)⟩+ S0|W (t)⟩}
(18)

where
S0 = [P1B,P2B, . . . , PnB] (19)

and

|W (t)⟩ =


|w1(t)⟩
|w2(t)⟩

...
|wn(t)⟩

 (20)

with |wr(t)⟩ =
∫ t

0
gr(τ)|u(τ)⟩dτ .

Definition. The operator S0 formulated in (19)is de-
fined to be quantum controllability operator of the quan-
tum control system (15).

Remark: The operator S0 may be
compared with the controllability matrix
S0 = [B,AB, . . . , An−1B] of the well known [7, 8] linear
classical control system represented by the vector matrix
differential equation in Rn as ẋ(t) = Ax(t) +Bu(t).

3 Formulation of the Weighted
Energy Control Problem

Given a quantum mechanical control system described in
subsection 2.2 in the Hilbert space H = L2(ICn) by the
time evolution state vector as

ih̄
d

dt
|ψ(t)⟩ = HA|ψ(t)⟩+ ih̄B|u(t)⟩ (21)

the optimal control problem is to find the controller
|u(t)⟩ ∈ L2(ICm) which steers the initial state |ψ(0)⟩ to
the final state |ψ(tf )⟩ in ICn and minimizes the energy cost
functional over the time interval 0 ≤ t ≤ tf prescribed by

J(u) =

∫ tf

0

⟨u+(t)|Q|u(t)⟩dt (22)

where Q(t) is a positive definite self-adjoint operator in
the Hilbert space L2

Q(0, tf , C
m) of the controller |u(t)⟩.

In describing the specific control system, the operator
Q(t) is defined by a diagonal matrix of the form

Q(t) =


q1(t) 0 . . . 0
0 q2(t) . . . 0

. . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . qm(t)

 (23)

The cost functional (22) is then reduced to the form

J(u) =

∫ tf

0

[q1(t)⟨u1(t)|u1(t)⟩|+. . .+qm(t)⟨um(t)|um(t)⟩]dt

(24)

It follows that each controller |ur(t)⟩ ∈ L2
Q(0, tf ) is

weighted by the positive function qr(t). It is known that
the weight function qr(t) is used in system analysis to
measure the efficiency of each controller |ur(t)⟩ of the dy-
namical system (21). Hence the admissible space of the
controllers |u(t)⟩ of the system is the Hilbert space ex-
pressed as the direct sum of the Hilbert spaces

L2
Q(0, tf ;C

m) =
m⊕
r=1

L2
qr (0, tf ). (25)

The inner product and norm of the Hilbert space
L2
qr (0, tf ) are respectively defined by

⟨f |g⟩qr =

∫ tf

0

qr(t)⟨f(t)|g(t)⟩dt (26)

and

∥f∥qr = (

∫ tf

0

qr(t)⟨f(t)|f(t)⟩dt)1/2 (27)

In view of the above notation, the cost functional J(u)
is then represented by the sum of square-norms on the
Hilbert spaces as

J(u) = ∥|u⟩∥2Q = ∥|u1⟩∥2q1 + . . .+ ∥|um⟩∥2qm (28)

The optimal control problem of the quantum me-
chanical system (21) is to find the optimal controllers
|ûr(t)⟩ ∈ L2

qr (0, tf ) which steer the initial state |ψ(0)⟩ to
the final state |ψ(tf )⟩ in Cn and minimize the weighted
energy functional defined in (28).

The existence and uniqueness of the optimal control
of the system can be proved by generalizing Theorem-1
and Theorem-2 in paper [11]. The optimal control stated
above can be shown to exist in a finite dimensional sub-
space of the Hilbert space L2

Q(0, tf ;C
m).

4 Solution of the Optimal Control
Problem

The analytical technique developed in paper [11] is now
generalized to solve the weighted energy optimal control
problem of the system.

In this general case, it follows from the state equations
(18), (19) and (20) of the control system that all the
eigenfunctions of the sequence {gi(t)}n1 of the operator
HA of the system (21) are associated with each controller
|ur(t)⟩. It also follows from the expression of the cost
functional (28) that the controllers |u1(t)⟩, . . . , |um(t)⟩ be-
long to different Hilbert spaces. For instances, the con-
troller |ur(t)⟩ weighted by the function qr(t) lies in the
Hilbert space L2

qr (0, tf ).
As in section 4 of paper[11] we now construct m se-

quences of weighted orthonormal functions from the given
sequence {gi(t)}n1 as follows:

{θq1i }n1 , {θ
q2
i }n1 , . . . , {θ

qm
i }n1 ,
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where {θqri }n1 is a finite sequence of functions orthonormal
related to the weight function qr(t), and

gi(t) =
i∑

k=1

⟨gi, θqrk (t)⟩qrθ
qr
k (t) (29)

with i = 1, 2, . . . , n and r = 1, 2, . . . ,m.
Let M2[0, T ] be the linear manifold generated by the

eigen functions {gi(t), i = 1, 2, . . . n} of the Hermitian op-
erator HA of the dynamical system in the Hilbert space
L2(ICm).

We now construct an orthonormal basis {θqri }n1 corre-
sponding to the weight function qr(t) of the linear mani-
fold M2[0, T ].

Using Gram-Schmidt orthogonalization process, let us
construct an orthonormal functions {θqri (t), i = 1, 2 . . . n}
as

β1 = g1
βi = gi −

∑i−1
k=1⟨gi, θ

qr
k ⟩θqrk

(30)

where θqr1 = β1

∥β1∥ and θ
qr
i = βi

∥βi∥ .

We elaborate the above in a few more steps:

β1 = g1
β2 = g2 − ⟨g2, θqr1 ⟩θqr1
β3 = g3 − ⟨g3, θqr1 ⟩θqr1 − ⟨g3, θqr2 ⟩θqr2
β4 = g4 − ⟨g4, θqr1 ⟩θqr1 − ⟨g4, θqr2 ⟩θqr2 − ⟨g4, θqr3 ⟩θqr3
. . . . . . . . .
βn = gn − ⟨gn, θqr1 ⟩θqr1 − ⟨gn, θqr2 ⟩θqr2 − ⟨gn, θqr3 ⟩θqr3

− . . . ⟨gn, θqrn−1⟩θ
qr
n−1

with θqr1 = β1

∥β1∥ , θ
qr
2 = β2

∥β2∥ , θ
qr
3 = β3

∥β3∥ and so on

θqrn = βn

∥βn∥ .

We now write the eigenfunctions gi(t) as

g1 = ⟨g1, θqr1 ⟩θqr1
g2 = ⟨g2, θqr1 ⟩θqr1 + ⟨g2, θqr2 ⟩θqr2
g3 = ⟨g3, θqr1 ⟩θqr1 + ⟨g3, θqr2 ⟩θqr2 + ⟨g3, θqr3 ⟩θqr3
g4 = ⟨g4, θqr1 ⟩θqr1 + ⟨g4, θqr2 ⟩θqr2 + ⟨g4, θqr3 ⟩θqr3

+⟨g4, θqr4 ⟩θqr4
. . . . . . . . .
gn = ⟨gn, θqr1 ⟩θqr1 + ⟨gn, θqr2 ⟩θqr2 + ⟨gn, θqr3 ⟩θqr3 +

+⟨gn, θqr4 ⟩θqr4 + . . .+ ⟨gn, θqrn ⟩θqrn

In a compact form we have

gi(t) = ∥βi∥θqri (t) +
∑i

k=1⟨gi, θ
qr
k ⟩θqrk (t) =

=
∑i

k=1⟨gi, θ
qr
k ⟩θqrk (t), i = 1, 2, . . . n.

(31)

Using the representations of the functions gi(t), i =
1, 2, . . . n given in (31), the adjoint U+(t) operator defined
in (17) can be represented in terms of the orthonormal
functions θqri (t), i = 1, 2, . . . n

as

U+(t) =
n∑

i=1

Aiθ
qr
i (t) (32)

where

Ai = ⟨gi, θqri ⟩Pi+⟨gi+1, θ
qr
i ⟩Pi+1+ . . .+⟨gn, θqri ⟩Pn (33)

With elaboration we have∑n
i=1 gi(t)Pi

= g1(t)P1 + g2(t)P2 + g3(t)P3 + g4(t)P4 + . . .
+gn(t)Pn

= ⟨g1, θqr1 ⟩θqr1 P1

+⟨g2, θqr1 ⟩θqr1 P2 + ⟨g2, θqr2 ⟩θqr2 P2

+⟨g3, θqr1 ⟩θqr1 P3 + ⟨g3, θqr2 ⟩θqr2 P3 + ⟨g3, θqr3 ⟩θqr3 P3

+⟨g4, θqr1 ⟩θqr1 P4 + ⟨g4, θqr2 ⟩θqr2 P4 + ⟨g4, θqr3 ⟩θqr3 P4

+⟨g4, θqr4 ⟩θqr4 P4

. . . . . . . . . . . .
+⟨gn, θqr1 ⟩θqr1 Pn + ⟨gn, θqr2 ⟩θqr2 Pn

+⟨gn, θqr3 ⟩θqr3 Pn + . . . ⟨gn, θqrn ⟩θqrn Pn

= A1θ
qr
1 (t) +A2θ

qr
2 (t) +A3θ

qr
3 (t) +A4θ

qr
4 (t)

+ . . .+Anθ
qr
n (t)

(34)
where

A1 = ⟨g1, θqr1 ⟩P1 + ⟨g2, θqr1 ⟩P2 + ⟨g3, θqr1 ⟩P3

+⟨g4, θqr1 ⟩P4 + . . .+ ⟨gn, θqr1 ⟩Pn

A2 = ⟨g2, θqr2 ⟩P2 + ⟨g3, θqr2 ⟩P3 + ⟨g4, θqr2 ⟩P4

+ . . .+ ⟨gn, θqr2 ⟩Pn

A3 = ⟨g3, θqr3 ⟩P3 + ⟨g4, θqr3 ⟩P4 + . . .+ ⟨gn, θqr3 ⟩Pn

. . . . . . . . . . . .
An = ⟨gn, θqrn ⟩Pn.

(35)

Then using (32) the state vector |ψ(t)⟩ described in
(16) of the dynamical system(21) may be represented as

|ψ(t)⟩ = U(t)|ψ(0)⟩+
∫ t

0
U(t− τ)B|u(τ)⟩dτ

= U(t)|ψ(0)⟩+ U(t)
∫ t

0
U+(τ)B|u(τ)⟩dτ

= U(t){|ψ(0)⟩+
∫ t

0
U+(τ)B|u(τ)⟩dτ}

= U(t){|ψ(0)⟩+
∫ t

0

∑n
i=1Aiθ

qr
i (τ)B|u(τ)⟩dτ}

= U(t){|ψ(0)⟩+
∑n

i=1AiB
∫ t

0
θqri (τ)|u(τ)⟩dτ}

= U(t){|ψ(0)⟩+ S|V (t)⟩}
(36)

where

S = [A1B,A2B, . . . AnB] (37)

and

|V (t)⟩ =


|v1(t)⟩
|v2(t)⟩

...
|vn(t)⟩

 , |vi(t)⟩ =
∫ t

0

θqri (τ)|u(τ)⟩dτ (38)

where |u(τ)⟩ is a m× 1 column vector.

Putting the values of Ai’s in (37) from (35) we get the
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algebraic relation

S
= [A1B,A2B, . . . , AnB]
= [⟨g1, θqr1 ⟩P1B + . . .+ ⟨gn, θqr1 ⟩PnB, . . . , ⟨gn, θqrn ⟩PnB]
= [P1B,P2B, . . . , PnB].

⟨g1, θqr1 ⟩Im 0 · · · 0
⟨g2, θqr1 ⟩Im ⟨g2, θqr2 ⟩Im · · · 0
⟨g3, θqr1 ⟩Im ⟨g2, θqr2 ⟩Im · · · 0

...
...

...
...

⟨gn, θqr1 ⟩Im ⟨gn, θqr2 ⟩Im · · · ⟨gn, θqrn ⟩Im


= S0△

(39)
where S0 is given in (19) and △ is a nonsingular lower
triangular matrix given by

△ =


△11 0 0 . . . 0
△21 △22 0 . . . 0
. . . . . . . . . . . . . . . . . . . . .
△n1 △n2 △n3 . . . △nn

 (40)

with △ik’s are the scalar matrices of order m expressed
as

△ik = diag{⟨gi, θqrk ⟩, ⟨gi, θqrk ⟩, . . . ⟨gi, θqrk ⟩}, i ≥ k (41)

and △ik = 0, the null matrix of order m, for i < k.
Hence comparing the representation of the state func-

tion in (18) and (36) we get

W (t) = △|V (t)⟩. (42)

Now we are in a position to solve the weighted optimal
control problem.

Replacing the functions gi(t) from (29)
we first calculate the components |ω1(t)⟩,
|ω2(t)⟩, |ω3(t)⟩, . . . , |ωn(t)⟩ of

|W (t)⟩ = [|w1(t)⟩, . . . , |wn(t)⟩]T (43)

with |wi(t)⟩ =
∫ t

0
gi(τ)|u(τ)⟩dτ .

Before doing that we first write down the eigenfunction
gi(t) with different weights q1, q2, . . . , qm as

g1 = ⟨g1, θq11 ⟩q1θ
q1
1

g2 = ⟨g2, θq11 ⟩q1θ
q1
1 + ⟨g2, θq12 ⟩q1θ

q1
2

g3 = ⟨g3, θq11 ⟩q1θ
q1
1 + ⟨g3, θq12 ⟩q1θ

q1
2 + ⟨g3, θq13 ⟩q1θ

q1
3

g4 = ⟨g4, θq11 ⟩q1θ
q1
1 + ⟨g4, θq12 ⟩q1θ

q1
2 + ⟨g4, θq13 ⟩q1θ

q1
3

+⟨g4, θq14 ⟩q1θ
q1
4

. . . . . . . . .
gn = ⟨gn, θq11 ⟩q1θ

q1
1 + ⟨gn, θq12 ⟩q1θ

q1
2 + ⟨gn, θq13 ⟩q1θ

q1
3 +

+⟨gn, θq14 ⟩q1θ
q1
4 + . . .+ ⟨gn, θq1n ⟩q1θq1n

with weight q1 and then

g1 = ⟨g1, θq21 ⟩q2θ
q2
1

g2 = ⟨g2, θq21 ⟩q2θ
q2
1 + ⟨g2, θq22 ⟩q2θ

q2
2

g3 = ⟨g3, θq21 ⟩q2θ
q2
1 + ⟨g3, θq22 ⟩q2θ

q2
2 + ⟨g3, θq23 ⟩q2θ

q2
3

g4 = ⟨g4, θq21 ⟩q2θ
q2
1 + ⟨g4, θq22 ⟩q2θ

q2
2 + ⟨g4, θq23 ⟩q2θ

q2
3

+⟨g4, θq24 ⟩q2θ
q2
4

. . . . . . . . .
gn = ⟨gn, θq21 ⟩q2θ

q2
1 + ⟨gn, θq22 ⟩q2θ

q2
2 + ⟨gn, θq23 ⟩q2θ

q2
3 +

+⟨gn, θq24 ⟩q2θ
q2
4 + . . .+ ⟨gn, θq2n ⟩q2θq2n

with weight q2 and so on with weight qm

g1 = ⟨g1, θqm1 ⟩qmθ
qm
1

g2 = ⟨g2, θqm1 ⟩qmθ
qm
1 + ⟨g2, θqm2 ⟩qmθ

qm
2

g3 = ⟨g3, θqm1 ⟩qmθ
qm
1 + ⟨g3, θqm2 ⟩qmθ

qm
2 + ⟨g3, θqm3 ⟩qmθ

qm
3

g4 = ⟨g4, θqm1 ⟩qmθ
qm
1 + ⟨g4, θqm2 ⟩qmθ

qm
2 + ⟨g4, θqm3 ⟩qmθ

qm
3

+⟨g4, θqm4 ⟩qmθ
qm
4

. . . . . . . . .
gn = ⟨gn, θqm1 ⟩qmθ

qm
1 + ⟨gn, θqm2 ⟩qmθ

qm
2 + ⟨gn, θqm3 ⟩qmθ

qm
3 +

+⟨gn, θqm4 ⟩qmθ
qm
4 + . . .+ ⟨gn, θqmn ⟩qmθqmn

|ω1(t)⟩
=

∫ t

0
g1(τ)|u(τ)⟩dτ

=
∫ t

0
[⟨g1, θq11 ⟩q1θ

q1
1 , ⟨g1, θ

q2
1 ⟩q2θ

q2
1 . . . , ⟨g1, θqm1 ⟩qmθ

qm
1 ].

|u1(τ)⟩
|u2(τ)⟩

...
|um(τ)⟩

 dτ

=


⟨g1, θq11 ⟩q1 0 . . . 0

0 ⟨g1, θq21 ⟩q2 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . ⟨g1, θqm1 ⟩qm

 .
∫ t

0
θq11 |u1(τ)⟩dτ∫ t

0
θq21 |u2(τ)⟩dτ

...∫ t

0
θqm1 |um(τ)⟩dτ


= c11|v1(t)⟩.

(44)
Similarly
|ω2(t)⟩ = c21|v1(t)⟩+ c22|v2(t)⟩,
|ω3(t)⟩ = c31|v1(t)⟩+ c32|v2(t)⟩+ c33|v3(t)⟩,
|ωn(t)⟩ =

cn1|v1(t)⟩+ cn2|v2(t)⟩+ cn3|v3(t)⟩ . . . cnn|vn(t)⟩.
Hence

|W (t)⟩

=


c11|v1(t)⟩
c21|v1(t)⟩+ c22|v2(t)⟩
c31|v1(t)⟩+ c32|v2(t)⟩+ c33|v3(t)⟩
cn1|v1(t)⟩+ cn2|v2(t)⟩+ cn3|v3(t)⟩ . . . cnn|vn(t)⟩


(45)

Thus

|W (t)⟩ =


c11 0 0 . . . 0
c21 c22 0 . . . 0
. . . . . . . . . . . . . . . . . .
cn1 cn2 cn3 . . . cnn




|v1(τ)⟩
|v2(τ)⟩

...
|vn(τ)⟩


= △Q|VQ(t)⟩,

(46)
∆Q being a lower triangular matrix defined by

△Q =


C11 0 0 . . . 0
C21 C22 0 . . . 0
. . . . . . . . . . . . . . . . . . . .
Cn1 Cn2 Cn3 . . . Cnn

 (47)
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in which Cij ’s are the diagonal submatrices described as

Cij =


⟨gi, θq1j ⟩q1 0 0 . . . 0

0 ⟨gi, θq2j ⟩q2 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . ⟨gi, θqmj ⟩qm


(48)

Hence we get

|ψ(t)⟩ = U(t){|ψ(0)⟩+ S0|W (t)⟩}
= U(t){|ψ(0)⟩+ S0△Q|VQ(t)⟩}
= U(t){|ψ(0)⟩+ SQ|VQ(t)⟩}

(49)

with
SQ = S0∆Q. (50)

Under the above transformation, the dynamical prob-
lem stated in section 3 is thus transformed into the follow-
ing algebraic problem of norm minimization as follows:

When the state norm |ψ(t)⟩ of the dynamical system
(21) is transformed from the initial state |ψ(0)⟩ to the
state |ψ(tf )⟩ after time tf , then putting t = tf in (49) we
get

SQ|VQ(tf )⟩ = |Yf ⟩ (51)

where
|Yf ⟩ = U†(tf )|ψ(tf )⟩ − |ψ(0)⟩. (52)

The optimal solution of the algebraic problem is de-
scribed by the pseudo-inverse S∗

Q of the operator SQ as
[5]

|V̂Q⟩ = S∗
Q|Yf ⟩ (53)

where S∗
Q = S†

Q(SQS
†
Q)

−1 with min ∥VQ∥ = min ∥ûQ∥
which follows from the property of orthonormal functions.

The optimal control |û(t)⟩ is now described immedi-
ately as follows:

Lemma -1.
If the rank of controllability operator S0 given in (9)

of the dynamical system (5) be n, then the operator SQ

is of rank n.
Proof.
The proof follows from the relation SQ = S0∆Q and

the fact that the triangular matrix ∆Q is nonsingular.
Lemma-2.
Let ∆Q be a lower triangular matrix defined by (36).

Then the product ∆Q∆
†
Q = DQ is a nonsingular symmet-

ric matrix described by

DQ =


D11 D12 D13 . . . D1n

D21 D22 D23 . . . D2n

. . . . . . . . . . . . . . . . . . . . .
Dn1 Dn2 Dn3 . . . Dnn

 (54)

where Dij ’s are diagonal matrices

Dij =


⟨gi, gj⟩q1 0 0 . . . 0

0 ⟨gi, gj⟩q2 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . ⟨gi, gj⟩qm


(55)

Proof.
The proof of the lemma is similar to that of Lemma -

1. In this case the relations in (29) and (50) are used in

finding the product ∆Q∆
†
Q.

We can now formulate the optimal solution of the
weighted energy problem in terms of the generalized
pseudo- inverse of the controllability operator SQ by the
following theorem:

Theorem - 1. If the dynamical system(21) is control-
lable, then there exists a unique optimal control |ûQ(t)⟩ ∈
L2
Q(0, tf ;C

m) which minimizes the cost functional J(u)
defined in (28) at |u(t)⟩ = |ûQ(t)⟩ and steers the state
|ψ(t)⟩ of the system from |ψ(0)⟩ to |ψ(tf )⟩ in time tf .
The optimal control can be formulated as

|ûQ(t)⟩ = GQ(t)|V̂Q⟩ (56)

where GQ(t) = [G1(t)
...G2(t)

... . . .
...Gn(t)] in which

Gi(t) =


θq1i (t) 0 . . . 0
0 θq2i (t) . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . θqmi (t)

 (57)

and
|V̂Q⟩ = S∗

Q|Yf ⟩
|Yf ⟩ = U†(tf )|ψtf ⟩ − |ψ0⟩,

(58)

S∗
Q being the generalized inverse of the matrix SQ de-

scribed as [11]

S∗
Q = S†

Q(SQS
†
Q)

−1 (59)

Proof.
The proof follows immediately when one considers the

Fourier generalized expansion of |ur(t)⟩ in terms of the
orthonormal functions

θqr1 (t), . . . , θqrn (t) (60)

and uses the state equation given in (49).

Corollary.
The optimal control described by (56) is formu-

lated in explicit form in terms of the eigenfunctions
g1(t), g2(t), . . . gm(t) of the system operator HA of the dy-
namical system (21) as

|ûQ(t)⟩ = KQ(t)|Yf ⟩ (61)

where
KQ(t) = F (t)S†

0(S0DQS
†
0)

−1 (62)

with F (t) = [Im(g1), Im(g2), . . . , Im(gn)] and Im(gr) is a
scalar matrix as

Im(gr(t)) =


gr(t) 0 . . . 0
0 gr(t) . . . 0

. . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . gr(t)

 (63)
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Proof.

The proof of the corollary follows when one uses the
relations defined in (29) and (38) and Lemma - 2.

Remark.

The matrix DQ is a generalized Grammian matrix of
the set of functions {gi(t)}n1 with respect to the weight
functions q1(t), q2(t), . . . , qm(t) of the controllers of the

dynamical system (21). The matrix S0DQS
†
0 is an equiv-

alent form of controllability Grammian matrix of the sys-
tem. Again, the analytical procedure described in this
section can be utilized to choose the weight functions of
the controllers of a control process.

5 Conclusion

The optimal control of a quantum mechanical system has
been reduced to an optimal problem of algebraic system
and the optimal vector of the minimum norm has been
solved by the method of pseudo-inverse. The importance
of this study lies in the fact that the optimal control with
minimum weighted energy has been expressed in terms of
the eigenstates of the multilevel quantum system. It may
be pointed out that the eigenstates of the Hamiltonian op-
erator of the system play important role in quantum com-
puting. The formulation of the optimal control in terms
of controllability[6, 7, 9] Grammian operator S0DS

+
0 of

the quantum mechanical system has been discussed. The
formulation of the quantum field require in steering the
quantum particles such as electron spin 1

2 and photons
from one state to another state is receiving much atten-
tion in recent years of solving computational problems
of quantum computer. The optimal control vector |û⟩
is also useful in computing the special energy operator
Ĵû = |û(t)⟩⟨û(t)| of the quantum control system. A gen-
eralization of the direct method outlined in this paper
in solving the weighted energy minimization problem of
time dependent quantum system and their applications
in quantum domain can be studied. The technology that
we have developed can also be used in laser pulse design
and molecular dynamics phenomena.
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