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Abstract
The effects of the following modes of density-

dependent control of population growth: density-
dependent adult survival rate, juvenile survival rate are
compared based on the mathematical model of popu-
lation dynamics. It is shown that the most efficient
mechanisms limiting population size are the decreas-
ing survival rate of the offspring with the increase in
their number. However, these same mechanisms are re-
sponsible for oscillations of the population size and its
chaotic change. The density-dependence of the adult
survival rate is not efficient in constraining the popula-
tion growth, but it can substantially limit the magnitude
of oscillations of the population size.
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1 Introduction
Here we consider evolutionary scenarios of the orig-

ination of oscillatory and chaotic population dynam-
ics in the species with the simple age structure. We
compare the two possible mechanisms of density-
dependent population growth: density-dependent adult
survival rate, juvenile survival rate. The relative effi-
ciency of these mechanisms is discussed. Moreover,
the suggested model allows one to consider compen-
satory mechanisms stabilizing the populations that ap-
proach the ”May threshold” and are responsible for the
allometric effect [Ginzburg and etc.,2010].
The dynamic equations for a simple age-structured

model are as follows [Frisman, Skaletskaya,1994]:

{
xn+1 = a · yn

yn+1 = s(xn, yn) · xn + v(xn, yn) · yn
, (1)

where x is a number of juveniles, y is a number of
adults, n is a reproductive season number, a is the birth
rate, and s(x, y) and v(x, y) are the survival rates of
juveniles and adults respectively. Functions: s(x, y),
v(x, y) monotonously decrease as their arguments in-
crease.
We consider the special versions of the model (1),

when one of its parameters is an exponential function
selected following Ricker’s model [Ricker,1954], and
the two others are constants.
Small mammals (murine rodents, squirrels, etc.), fast

maturing fish (as navaga, smelt, etc.), many insects,
and biennial and triennial plants may serve as example
[Frisman, Skaletskaya,1994; Frisman and etc.,1988;
Ferriere, Gatto, 1993]. It is these groups of species that
have complex oscillating dynamics and are the most
common objects of experimental research and exam-
ples in the theoretical population biology.

2 Model with density-dependent juvenile survival
rate

The substitutions s(x, y) = exp(−αx − βy),
v(x, y) = v and αx → x, and αy → y transform
(1) into

{
xn+1 = a · yn

yn+1 = xn · exp(−xn − ρ · yn) + v · yn
, (2)

where α and β are the intensities of the birth rate de-
cline because of the growth of juvenile and adult num-
bers respectively ρ = β/α is a parameter which charac-
terizes the ratio of intensity of the limitation of juvenile
survival rate due to the number of adults and the self-
limitation. Analysis of this system becomes simpler if
we also introduce new parameters c = ρ/a; ρ = ac.
The only non-trivial stationary solution of (2) is
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Figure 1. The stability domain of a non-zero solution for the system
(2) with selected values of the parameter c.
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and it exists if a ≥ 1− v and 0 ≤ v < 1.
The standard method of finding the stability domain is

based on the following theorem:
Solutions of the equation λ2 + pλ + q = 0 belong

to the circle |λ| < 1 if and only if |p| − 1 < q < 1
[Shapiro,Luppov, 1983].
In our case

p = −
(
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1 + c

ln
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a
+ v

)
,

q = −(1− v)
(
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1
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.

And therefore the boundaries of the stability domain
for the equilibrium point (3) are as follows:
λ∗ = 1 :

a = a1 = 1− v,

λ∗ = −1 :

a = a2 = (1− v) exp
2v · (1 + c)

(c− 1)(1− v)
, (4)
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Figure 2. The ”portraits” of attractors dependent on the parameter
a at c = 0.1 and v = 0.05.

q = 1 :

a = a3 = (1− v) exp
(2− v)(1 + c)

1− v
. (5)

Note that the line a = 1 − v is also a line of the sys-
tem bifurcation. If a = v < 1 (3) has a unique zero
equilibrium point which is globally stable (i.e., popu-
lation degenerates). If parameters change, and the line
a + v = 1 is crossed over (already when a − v < 1)
the trivial (zero) solution loses its stability, and a new
stable non-zero (non-trivial) solution (3) appears.
Coordinates (v; a) allow one to easily trace the change

of the stability domain of this solution with the change
of the parameter c (fig. 1).
Depending on the mode of stability loss by the non-

zero solution for the system (2), we can identify the
following intervals for the values of parameter c:
1. 0 < c ≤ 1
In this case, the stability domain is bound by one curve

(5) and considerably expands with the increase of the
parameter c. Loss of stability may happen only if the
solutions for the characteristic equation are conjugate
at |λ| = 1 transition through 1.
It has been previously shown that the decline of the

juvenile survival rate with the growth of the number
of juveniles only (β = 0, c = 0) may lead to fairly
complex oscillations of the population size [Frisman,
Skaletskaya,1994]. It is now clear that if the juvenile
survival rate does not only depend on the group’s own
number but also modestly on that of the adults, not
only does the equilibrium population size decrease, but
its stability domain significantly expands (fig.1, upper
row).
The population equilibrium loses its stability with the

growth of parameter a. The smaller the parameter c is,
the sooner the loss of stability happens. It is followed
by a series of bifurcations, an emergence of the invari-
ant curve and complex attractors(fig.2).
Also, the system has attractors of fractional dimension

for small values of adult survival and at very high val-
ues of birth rate (fig. 3).
2. 1 < c < 3.
Within this range of parameter c, decline of the juve-

nile survival rate related to the number of adults leads
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Figure 3. The ”portraits” for attractors of fractional dimension at
0 < c ≤ 1.

now to noticeable contraction of the stability domain
of population equilibrium size. In this case, there are
two possible scenarios of stability loss: the emergence
of 2-cycle when v is small and the emergence and de-
struction of the invariant curve when v is large.
3. c ≥ 3.
With further growth of the parameter c, loss of the

equilibrium stability may happen only with the transi-
tion of one of the eigenvalues through -1 and is accom-
panied by a cascade of period-doubling bifurcations.
In this case, further contraction of the stability domain
is observed, and self-limiting of the juvenile group be-
comes irrelevant.
Fig.4 shows a bifurcation diagram, demonstrating

progressive complication of the population dynamics
through the cascade of period-doubling bifurcations at
c ≥ 3.
The diagram is followed by the graphs for the 1st Lya-

punov coefficient and the attractor’s dimension. Benet-
tin’s algorithm has been used for the Lyapunov coef-
ficient calculation, and the attractor’s dimension has
been calculated using Kaplan-Yorke’s formula [Ka-
plan, Yorke,1979]. The chaotic structures that emerge
in this case have a dimension of a little bit greater than
one. The dimension is slowly growing with the in-
crease of the parameter a. The fig.3 also shows the
most common type of attractor in this case. It has a
large distance between the extreme points and resem-
bles the Henon’s attractor [Henon,1976].

3 Model with Density-dependent limitation of the
adult survival rate

The substitutions βx → x, βy → y and s(x, y) =
s, v(x, y) = exp(−αx − βy) transform (1) into the
system

{
xn+1 = a · yn

yn+1 = s · xn + exp(−γ · xn − yn) · yn
, (6)

where γ = α/β.
h = aγ = aα/β is a convenient parameter for the

analysis of a non-zero equilibrium existence and sta-
bility for the system (6).
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Figure 4. Bifurcation diagram with the ”portrait” of attractor and
graphs for the 1st Lyapunov coefficient (λ) and the dimension (D)
of the attractor versus the value of the parameter a.

The system (6) has unique non-zero stationary solu-
tion:

x =
a

1 + h
ln

1
1− as

, y =
1

1 + h
ln

1
1− as

. (7)

Inequality as < 1 is necessary for its existence.
Boundaries of the stability domain for the non-zero

stationary solution are defined by the following condi-
tions:
λ∗ = 1 :

a = 1/s, (8)

λ∗ = −1 :

a =
1
s
·
(

1− exp
(

2
h + 1
h− 1

))
, (9)

q = 1 :

−as− h(1− as)
h + 1

ln(1− as) = 1. (10)

The stability domain for the non-zero equilibrium (7)
is formed by the curves (8) and (9). The curve (10)
does not intersect with the domain of existence of the
stationary point and, therefore, does not restrict its sta-
bility domain.
At h < 1 the curve (8) is above the curve (9). The

closer h is to 1, the smaller the distance between the
curves (8) and (9) is. Loss of stability of the equilib-
rium (7) happens with the growth of either birth rate a
or the juvenile survival rate s while crossing over the
curve (9). It is accompanied by one of the eigenvalues
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Figure 5. Stability domain of the non-zero equilibrium for the sys-
tem (6).
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Figure 6. Trajectories of the system (6) at h = 0, s = 0.5, for
the different values of the reproductive potential of the population.

transition through -1 and the 2-cycle emergence. How-
ever, the parameter domain supporting the periodic dy-
namics is small (it achieves the maximum size at h = 0
which corresponds to the limiting version of the model
(6) at γ = 0, fig.5). Further increase of the parame-
ters and crossing over the bifurcation boundary as = 1
leads to the unlimited growth of the population.
Fig.6 shows the behavior of the trajectories of the sys-

tem (6) depending on the values of the reproductive po-
tential at h = 0.
At h ≥ 1 the curve (9) is outside the domain of posi-

tive parameter values; therefore, we do not observe any
stable cycles. Non-zero equilibrium (7) is stable over
the entire domain. Loss of stability happens with the
crossing over the bifurcation boundary as = 1 and is
accompanied by unrestricted population growth.

4 Conclusion
The offspring survival decrease, which is directly or

indirectly related to its number growth, is also com-
mon among mammals, small and large. However, we
find that just this mechanism of population growth con-
trol can lead to complex population oscillations if re-
productive potential increases. We are just beginning
to appreciate the possibilities of evolutionary behavior
of the ecologically limited populations with age struc-
ture [Ginzburg and etc.,2010; Ferriere, Gatto, 1993;
Charlesworth,1993; Frisman, Zhdanova,2009]. Sce-
narios of their genetic and dynamic development are
very impressive and are by far not fully understood and
described.
The parametric stability domain of the population

grows if the juvenile survival rate depends not only on
their number, but also modestly depends on the number
of adults. Moreover, the regulation of the juvenile sur-
vival rate mostly by the number of adults appears to be
inefficient; the stability domain substantially contracts,
and leaving the domain leads to the oscillations of a
large magnitude.
Thus, adding the restricting power of the juvenile

number to the model increases the stability domain of
the population and eventually makes the oscillatory dy-
namics impossible. However, stability domain is still
rather small, so we can assume that the decrease in the
adult survival rate with the population growth cannot
efficiently control the population size. However, lim-
iting of the adult survival rate by the numbers of both
age groups may be able to considerably weaken inten-
sity and magnitude of population oscillations.
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