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Abstract— Formation of a large amplitude Turing pattern may 
be accompanied by appearance of the negative differential 
conductance in a self-organized system. The effect is observed 
at studying a two-component reaction-diffusion model 
introduced earlier to interpret the occurrence of pattern 
formation in semiconductor-gas discharge devices. The 
revealed autocatalytic process can initiate further complicated 
scenarios of self-organization of a system. 
 
 

I. INTRODUCTION 
 

It is well known that conducting systems can manifest 
multi-valued current-voltage characteristics, which is 
specified as the appearance of the negative differential 
conductance (NDC). In principle, the NDC can be revealed 
from measurement of the voltage drop on electrodes of a 
system while varying its current. (Or, vice versa, by varying 
the voltage, and measuring the current). At the presence of 
NDC, the homogeneous state of a spatially extended system 
may become unstable, while there may grow spatially non-
homogeneous fluctuations. This results in the appearance of 
a dissipative structure. In semiconductor electronics, classic 
examples of dissipative structures are formation of current 
filaments in devices that manifest the current voltage 
characteristic (CVC) of S-type and domains of high electric 
fields in samples that show the N-type CVC [1-3]. Notice 
that the decrease in the voltage drop on a system’s 
electrodes under the current increase gives the evidence of 
the S-type behavior of NDC. 

In the present study, we consider an example, where a 
dissipative structure itself is responsible for formation of the 
NDC of a system. In such a case, the “primary” dissipative 
structure may be responsible for further development of the 
self-organized system. This result is obtained for a two-
component reaction-diffusion model where formation of 
primary dissipative structures is due to the Turing instability 
of the spatially homogeneous state. The model has been 
introduced earlier [4] to interpret the experimentally 
observed phenomenon of formation of spatial patterns in dc-
driven planar semiconductor-gas discharge systems [4,5]. 

A schematic representation of the pattern-forming device 
is shown in Fig. 1. Its main parts are the semiconductor plate 
and the gas-filled gap, which thicknesses are ds and d, 
correspondingly. Both sides of this two-layered structure are 
covered with thin-film electrodes that are transparent with  
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respect to light. The device is fed by a d.c. voltage source. 
The value of gas-discharge current, which is along the z 
axis, is controlled with the semiconductor electrode. Its 
resistance can be varied by applying the irradiation with 
infrared light. 
 

 
Fig. 1. Semiconductor-discharge gap pattern-forming device 

(schematically). 
 

The spatial distribution of current in the device can be 
evaluated by observing the corresponding distribution of the 
gas glow in the gas-discharge gap. This can be done by 
applying a CCD camera that is sensitive in the visible range 
of light. For further details, see, e.g., [4,5]. 
 

II. THE MODEL STUDIED 
 

To describe formation of patterns in the device 
represented in Fig. 1, next equations were introduced in [4]:  
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where variables U and N in (1,2) are the voltage drop on the 
gas discharge gap, and density of free charge carriers in the 
gap, correspondingly; a, b, c and γ are coefficients; S is the 
square of the planar system; N - density of carriers 
averaged over the plane of the system; U0 is the voltage 
feeding the device. 

The first equation describes the charging the capacity of 
the discharge gap from the voltage source U0, and its 
discharging via the presence of free carriers in the gap. The 
charging process proceeds with the time constant τU, which 
value is dependent on the resistivity of the planar 
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semiconductor electrode. The term 
__

Nγ  takes into account 
the global negative feedback that exists in the physical 
pattern-forming system, or can be incorporated intentionally 
by adding a resistor R0 into the electrical circuit feeding the 
device, see Fig. 1. 

The second equation describes dynamics of charge 
carriers in the gap. The rate of their generation is controlled 
by the second term. The term in quadratic brackets takes 
into account the efficiency of the autocatalytic process of 
carriers’ generation. Other conditions being equal, it can be 
regulated by changing the value of parameter N*. 
Characteristic time Nτ  defines the rate of carriers decay at 
the absence of their generation. Last terms in equations 
describe diffusive spreading of variables in the plane. We 
point out that the variable N activates the formation of 
spatial structures in the system, while U plays the inhibiting 
role in this process. 
 

III. SOME PROPERTIES OF MODEL 
 

We are interested in patterned states of the non-linear 
equations (1,2) on two-dimensional domain x,y. In general, 
they can be found only by numerical calculations. However, 
some important features of the model may be clarified when 
finding stationary homogeneous solutions of equations. At 
the absence of the external load (γ = 0), these states are 
stationary solutions to the next equations: 
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As an important characteristic of such states, we consider 

values of NS as dependent on the feeding voltage U0. 
Examples of corresponding dependences obtained for four 
values of τU are shown in Fig. 2. The curves are calculated 
at the next set of parameters of (3,4): τN = 10-3 sec; a = 0.83, 
b = 0.2, c = 2×10-4 cm3/sec; N* = 5×104 cm-3. Remark that in 
a real device, τU  may be controlled optically, by varying the 
intensity of infrared light J used to irradiate the 
semiconductor electrode, see Fig. 1. Increase in J is 
accompanied by the decrease of τU . 

The data of Fig. 2 illustrate that varying the value of τU 
can qualitatively change the dependence NS = f(U0): Increase 
in τU can initiate transition from the S-type curve (where 
voltage on electrodes of the system decreases with increase 
of the density of carriers in the gap) to a monotonic one. In 
other words, increase in τU  is followed by transition from 
the S-type negative differential conductance state to a state 
without the NDC. 

Notice that two-component models that are close to (1,2) 
have been intensively studied in the theory of self-organized 
systems, see, e.g., [6-9]. These models contain terms 

responsible for the autocatalytic reproduction of one 
variable, and the diffusion coupling of the two variables. 
Among relatively simple models, we point out a so called 
brusselator [9]. It has been introduced and studied by I. 
Prigogine and his collaborators in Brussel. The specific 
feature of brusselator is the monotonic dependence of the 
global “transport” curve – similar to the dependencies 
observed in our case for large τU values, see Fig. 2. 

 

 
Fig. 2. Dependencies of stationary density of carriers on the feeding 

voltage for different values of parameter τU. For the other 
parameters of calculations, see the text. 

 

 
Fig. 3. Real part of increment of small perturbations of stationary 

solutions as dependent on wave vector. Data are 
calculated for the one dimensional version of (1,2). For 
values of parameters, see the text. 

 
In the present paper, we will deal with the brusselator-like 

version of the model (1,2). That is, we are interested in the 
range of parameters of equations where the stationary 



homogeneous state of the system does not exemplify the 
NDC. As is well-known, such state is stable against 
perturbations of transverse (in the plane x,y) wave vectors k 
≈ 0; that is, the amplitude of the spatially homogeneous state 
can not spontaneously change. 

It can be shown, however, that, similar to brusselator, the 
stationary homogeneous solution of (1,2) may become 
unstable against periodic in space perturbations when the 
spatial coupling of variables is included. This is 
demonstrated in Fig. 3, where a set of spatial modes 
calculated at different values of the feeding voltage U0 is 
shown. The data are obtained for the one-dimensional 
version of (1,2) at γ = 0. The next set of parameters is used 
in calculations: τN = 10-3 sec; τU = 10-2 sec; a = 1.0; b = 0.4; 
c = 1.64×10-4 cm3/sec; N* = 1.5×105 cm-3; DU = 0.625 cm2/sec; DN 
= 0.045 cm2/sec. 

For the example presented, the system remains stable at 
low U0, while the modes decay for perturbations of all 
spatial scales. Increasing U0 up to some, critical, value 
results in appearance of a perturbation which decay is zero. 
In the case considered, this occurs for the perturbation of 
wave vector  kT  at U0 ≈ 1165 V. At a further increase in U0, 
there appear growing modes, which evidences the instability 
of the homogeneous state of the system against small 
amplitude perturbations. 

 
IV. FORMATION OF TURING STRUCTURES 

 
The origin of instability that is described in the previous 

Section, is essentially defined by the diffusion process. The 
diffusion mechanism of instabilities, for the case of two 
variables, was treated for the first time in [10]. It was 
demonstrated in the cited paper that it can give a spatially 
periodic stationary structure. Now it is referred to as the 
Turing mechanism of pattern formation. 

The numerical investigation of the model (1,2) on two-
dimensional domain [4] supports the conclusion of the 
previous Section that, at proper set of parameters, a 
stationary, spatially homogeneous solution becomes 
unstable against small-amplitude perturbations when the 
feeding voltage U0 reaches some critical value . In 
general, the instability gives rise to the growth of the 
hexagonal pattern. 

0
critU

Formation of a hexagonal pattern on the two-dimensional 
domain is known to be characterized by the hysteretic 
behavior. This is also observed in the considered case: The 
decay of the hexagon occurs at a value of U0 that is lower 
than . We notice that this regularity is in 
correspondence with experimental results obtained at 
studying the semiconductor-gas discharge pattern-forming 
system [4, 11] represented in Fig. 1. Remark that the 
emerging pattern there is the hexagonal arrangement of 
current filaments. 

0
critU

The possibility of current filaments to exist in a sub-
critical domain means that they can co-exist with the 
homogeneous background. The number of filaments 
(correspondently, of N maxima in calculations) inside the 

active area of a system may vary and depends on the 
system’s history. In essence, these objects are dissipative 
solitons (DS) [12,13] (they are also referred to as 
autosolitons [14]) that can exist stable in a non-equilibrium 
system. 

Among other remarkable properties, DSs are known to 
initiate the appearance of new DSs when control parameters 
are varied. This may occur either via the division of primary 
DSs [14-16], or via the so called self-completion process 
[14]. In the last scenario, new-born DSs are generated at the 
neighborhood of existing ones. For a two-dimensional 
system, this phenomenon has been observed in numerical 
analysis of (1,2) and in the experimental investigation of the 
semiconductor-gas discharge system [4]. 
 
V. NEGATIVE DIFFERENTIAL CONDUCTANCE IN THE COURSE 

OF FORMATION OF A STRUCTURE 
 

Investigation of the model (1,2) gives the evidence that 
formation of a spatially extended pattern in the course of the 
self-completion process can lead to the NDC of the whole 
system. This conclusion follows from the result of the next 
calculations which stages are illustrated by Fig. 4 and 5. 
Data of Fig. 4 show the average density of carriers as 
dependent on the voltage drop on the system US (this is the 
difference between the applied voltage U0 and the voltage 
drop on the load modeled by the term Nγ ). These data 
have been obtained as follows. A solution of the system that 
contains one DS within the analyzed active domain has been 
used as the initial one. This is the stationary state, where the 
DS coexists with the homogeneous background, see Fig. 5 a. 
In the plane ( N , US), this state corresponds to the point (a) 
on the curve of Fig. 4. Then, the gradual increase in the 
feeding voltage U0 is applied in the calculation procedure. 

This leads to the nearly linear increase in , which is 
observed up to the voltage

__

N
self complU − , Fig. 4. Reaching this 

critical voltage changes qualitatively the state of the system. 
The initial DS stimulates the birth of new DSs in its 
neighborhood via the self-completion process, see Fig. 5 b. 
The process repeats, which is followed by spreading of the 
hexagonal pattern over all the active area of the system, 
stages b,c,d in Fig. 5. 

The amplitude of stationary DSs Nmax is essentially higher 
than that for the homogeneous background. That is, the birth 
of new DSs is accompanied by an increase in the total 
quantity of activator N. At the absence of the “external” load 
(that is, at γ = 0) the self-completion of the hexagonal 
pattern results in the transition of the system along the 
vertical line (a’-e) in Fig. 4. This process lasts till all the 
active area of the system becomes filled with the pattern. 

In the case γ ≠ 0, the growth of the hexagon, which gives 
the increase in the overall quantity of activator, is 
accompanied by diminishing the voltage drop on the 
structure, because larger and larger part of the applied 
voltage drops on the load. That is, the NDC is revealed in 



the global transport characteristics of the system, which is 
reflected by the falling of voltage US as the pattern grows 
(Fig. 4). When all the area is filled with the hexagon 
(Fig. 5 d), the characteristic becomes again linear, domain 
(d) in the curve of Fig. 4. We remark also that the details of 
development of the system depend on the rate of increase in 
the feeding voltage. Other conditions being equal, at 
diminishing the rate of increasing U0 in the calculation 
procedure is followed by observing a somewhat less 
effective value of self complU − . In this case, the overall 
characteristic can somewhat shift to lower voltages, as 
represented by the sequence of round points in Fig. 4. 
 

 
Fig. 4. Dependences of average density of carriers on the voltage 

drop on the structure US. The points on the plot are obtained 
at γ = 5×10-3. The other parameters of calculations are the 
same as those used to obtain data of Fig. 3. Calculation is 
done for quadratic area of linear dimension L=3.5 cm. Two 
sets of data that are shown with square and round points are 
obtained at somewhat different rates of increasing the 
parameter U0. 

 
 
 

 
 

Fig. 5. A realization of the self-completion scenario of the 
hexagonal structure. Shown is the sequence of spatial 
distributions of the activator N that is observed while 
going along the global transport characteristic of Fig. 4 
marked with square points. Letters below the pictures 
comply with stages labeled by corresponding letters on the 
curve of Fig. 4. 

 

VI. DISCUSSION AND CONCLUSIONS 
 
In case studied in the present work, we deal with two 

mechanisms of differential negative resistance. The first one 
exists in the spatially homogeneous state (in the reference 
state). It is due to the second term in the square brackets of 
Eq. (2), which models the non-linear transport characteristic 
of the gas discharge gap. This NDC is the “internal” one, 
that is, it does not appear in the global transport 
characteristic N (US) for the reference (spatially 
homogeneous) state. Together with the diffusion of 
components, it is responsible for formation of Turing 
patterns. Contrary to this mechanism, the second one is 
realized when a large-amplitude Turing pattern develops. 
The growth of the pattern leads to the strong non-linearity in 
the global transport characteristic of the system, which is 
due to the essential increase of quantity of the activator N. 
At presence of the global load, the NDC of the system is 
then detected. 

The data of Figs. 4,5 present also another interesting 
feature of the pattern growth via the self-comletion scenario: 
Increase in number of DSs that constitute the pattern is 
followed by a decrease of the voltage needed to initiate a 
further growth of the pattern in space. Indeed, as follows 
from these Figures, the spreading of the hexagon in space is 
observed at values of the voltage drop on the system that are 
lower than the critical voltage needed to start the self-
completion process from a solitary DS. So, the growing 
pattern renders the autocatalytic action on its further 
development. This phenomenon seems to be related with a 
coherent perturbation of the homogeneous surrounding by 
the ordered ensemble of DSs, which is more efficient than 
the action of a lonely DS. 

Finally, the presence of the global NDC (that is, the NDC 
that can be measured on electrodes of a system) is known to 
initiate the oscillatory dynamic of systems. In the case of the 
spatially extended system considered here, interesting 
scenarios of further spatio-temporal self-organization can be 
realized. As an example, there can appear oscillatory 
dynamic of the system, where Turing patterns exist in the 
bursting mode. According to preliminary experimental data, 
such a regime of self-organization may be observed in the 
planar cryogenic semiconductor-gas discharge device 
described in [4,3]. 
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