
CYBERNETICS AND PHYSICS, VOL. 2, NO. 3, 2013 , 177–182

PENALTY FUNCTION METHOD FOR OPTIMIZING
CONSTRAINED PROPORTIONAL CONTROL PROBLEMS

Olusegun Olotu
Department of Mathematical Sciences

Federal University of Technology, Akure
Nigeria

oolotu@futa.edu.ng

Emmanuel Jesuyon Dansu∗

Department of Mathematical Sciences
Federal University of Technology, Akure

Nigeria
ejdansu@futa.edu.ng

Abstract
The general continuous proportional control prob-

lems constrained by ordinary differential equations are
considered. We discuss the optimization of propor-
tional control problems with equality constraints. The
quadratic penalty function method is used to convert
the constrained problems into unconstrained problems.
Discretization of the objective functions and the con-
straints is carried out using the Composite Simpson’s
Rule and the Fourth-Order Adams-Moulton Technique
respectively. The new formulation gives rise to the con-
struction of an operator amenable to the application of
the Conjugate Gradient Method (CGM). Analysis of
the convergence of the solutions is carried out and the
results are found to compare favourably with those ob-
tained from existing algorithms.
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1 Introduction
Given a mathematical programming problem, [Bell-

more, Greenberg and Jarvis, 1968] constructed an al-
ternate problem with its feasibility region a superset
of the original mathematical problem. The objec-
tive function of the problem was constructed so that
a penalty is imposed for solutions outside the origi-
nal feasibility region. An attempt was made to choose
an objective function that makes the optimal solution
to the new problem the same as the optimal solu-
tion to the original mathematical programming prob-
lem. Control theory is certainly, at present, one of the
most interdisciplinary areas of research and arises in
the very first technological discoveries of the indus-
trial revolution as well as the most modern technolog-
ical applications. On the other hand, Control theory
has been a discipline where many mathematical ideas
and methods have melted to produce a new body of

important Mathematics. Accordingly, it is nowadays
a rich crossing point of Engineering and other Sci-
ences with Mathematics [Fernández-Cara and Zuazua,
1979]. The work presented by [Schwartz, 1996] was
based on discretizing optimal control problems using
explicit, fixed step-size Runge-Kutta integration tech-
niques. The advantage of this scheme over colloca-
tion schemes is that the approximating problems that
result can be solved very efficiently and accurately. Ac-
cording to [Olotu and Olorunsola, 2006], many earlier
schemes, particularly the Function Space Algorithm
(FSA) which sidetracks the knowledge of operator for
solving quadratic optimal control problems, have been
computationally involving and iteratively high. In their
research, a new scheme, Discretized Continuous Algo-
rithm (DCA), was proposed with developed associated
operator consisting of a series of summation replac-
ing the integrals of the earlier schemes, thus enhanc-
ing much more feasible results and lower iterations.
[Adekunle and Olotu, 2012] dealt with optimal con-
trol problems whose cost is quadratic and whose state
is governed by linear delay differential equations and
general boundary conditions. The basic new idea of the
paper was to propose an efficient and robust algorithm
for the solution of such problems by the conjugate gra-
dient method (CGM) via quadratic programming. The
results were promising as compared with existing algo-
rithms. [Olotu and Dawodu, 2013] developed a robust
algorithm for solving a class of optimal control prob-
lems in which the control effort is proportional to the
state of the dynamic system. A typical model was stud-
ied which generates a constant feedback gain, an esti-
mate of the Riccati equation for large values of the final
time. Using the third Simpson’s Rule, a discretized un-
constrained non-linear problem via the Augmented La-
grangian Method was obtained. This problem was con-
sequently subjected to the Broydon-Fletcher-Goldberg-
Shannon (BFGS) Method based on the Quasi-Newton
algorithm. The positive-definiteness of the estimated
quadratic control operator was analyzed to guarantee
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its invertibility in the BFGS Method. This paper is
necessitated by the fact that there is a dearth of liter-
ature on the mathematical theory of proportional con-
trol. This research deals with the problem of optimiz-
ing an energy cost function of a linear, one-dimensional
system, controlled with a proportional controller. The
problem has far reaching theoretical and practical ap-
plications in mechanical and electrical engineering.

2 General Problem Formulation
The problem is modelled in order to find the state and

control paths that minimize the objective function of
the following problem.

Minimize J(x,w) =
1

2

∫ T

0

f(t, x(t), w(t))dt (1)

Subject to ẋ(t) = g(t, x(t), w(t)), w(t) = mx(t) (2)
t ∈ [0, T ], x(0) = x0 (3)
where p, q, a, b,m ∈ R; p, q > 0

also x,w, f, g ∈ R and

f and g are twice differentiable

m is the proportional control constant.

where x is the state variable which describes the sys-
tem, w is the control variable which directs how the
system evolves. The numerical solution is obtained
by applying the Conjugate Gradient Method (CGM)
to the discretized form of the problem. The objective
function is discretized using the Composite Simpson’s
Rule. The Fourth-Order Adams-Moulton Technique is
used in discretizing the constraint.

3 Methodology
Given the optimal control model with feedback law

having the form

Minimize J(x,w) =
1

2

∫ T

0

(px2(t) + qw2(t))dt (4)

Subject to ẋ(t) = ax(t) + bw(t), w(t) = mx(t) (5)
t ∈ [0, T ], x(0) = x0 (6)
where p, q, a, b,m ∈ R; p, q > 0 and

m is the proportional control constant.

In discretizing the objective function

J(x,w) =
1

2

∫ T

0

(px2(t) + qw2(t))dt (7)

we use the Composite Simpson’s Rule which is given
as

∫ n

0

f(t)dt =
h

3

{
f(0) + 2

n
2 −1∑
j=1

f(t2j) + 4

n
2∑

j=1

f(t2j−1)

+ f(n)

}
− (

n

180
)h4f4(ζ)

(8)

Since w(t) = mx(t),

J(x,w) =
1

2

∫ T

0

(px2(t) + q(mx(t))2)dt (9)

=
(p+ qm2)

2

∫ T

0

x2(t)dt (10)

Given that n = T
h , where n is the number of partitions

and h is the step length, we apply the Composite Simp-
son’s Rule as follows

J(x,w) =
(p+ qm2)

2

(
h

3

){
f(0) + 2

n
2 −1∑
j=1

x2
2j

+ 4

n
2∑

j=1

x2
2j−1 + f(n)

}
(11)

J(x,w) =
h(p+ qm2)

6

{
x2
0+2

n
2 −1∑
j=1

x2
2j+4

n
2∑

j=1

x2
2j−1+x2

n

}
(12)

Setting M
2 = h(p+qm2)

6 and putting the expression in
matrix form, we have

J(X) =
1

2
XTAX + C (13)

where XT = (x1, x2, x3, x4, ..., xn−2, xn−1, xn) is an
n-dimensional row vector,

A =



4M 0 0 0 . . . 0 0 0
0 2M 0 0 . . . 0 0 0
0 0 4M 0 . . . 0 0 0
0 0 0 2M . . . 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 . . . 2M 0 0
0 0 0 0 . . . 0 4M 0
0 0 0 0 . . . 0 0 M
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is an n × n dimensional coefficient matrix defined
below as:

A = Aij =


4M, i=j (odd);
2M, i=j (even);
M, i=j=n;
0, i ̸= j,

(14)

X =



x1

x2

x3

x4

...
xn−2

xn−1

xn


and C = M

2 x2
0.

To discretize the constraint

ẋ(t) = ax(t) + bw(t) (15)

we use the Fourth-Order Adams-Moulton Technique
which is defined as

xi+1 = xi +
h

24

{
9f(ti+1, xi+1) + 19f(ti, xi)

− 5f(ti−1, xi−1) + f(ti−2, xi−2)

} (16)

Again, since w(t) = mx(t), we have

ẋ(t) = ax(t) + bmx(t) (17)
ẋ(t) = Bx(t) (18)

where B = a+ bm.

Applying the Adams-Moulton Technique, we have

xi+1 = xi +B

{
h

24
(9xi+1 + 19xi

− 5xi−1 + xi−2)

} (19)

xi+1 =
24 + 19Bh

24− 9Bh
xi −

5Bh

24− 9Bh
xi−1

+
Bh

24− 9Bh
xi−2

(20)

If D = 24+19Bh
24−9Bh , E = − 5Bh

24−9Bh , F = Bh
24−9Bh , we

have

xi+1 = Dxi + Exi−1 + Fxi−2 (21)

Taking values from i = 2 to i = n− 1 and putting the
expression in matrix form, we have

−E −D 1 0 . . . 0 0 0 0
−F −E −D 1 . . . 0 0 0 0
0 −F −E −D . . . 0 0 0 0
0 0 −F −E . . . 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 . . . 1 0 0 0
0 0 0 0 . . . −D 1 0 0
0 0 0 0 . . . −E −D 1 0
0 0 0 0 . . . −F −E −D 1





x1

x2

x3

x4

...
xn−3

xn−2

xn−1

xn


=



Fx0

0
0
0
...
0
0
0
0


(22)

So,

GX = K (23)

where G is of dimension (n−2)×n, X is of dimension
n× 1 and K is of dimension (n− 2)× 1.

By parametric representation, the discretized propor-
tional control problem becomes

Minimize J(X) =
1

2
XTAX + C (24)

Subject to GX = K (25)

The unconstrained form of the original problem is ob-
tained by using the Quadratic Penalty Function Method
as follows:

L(X,µ) =
1

2
XTAX + C + µ||GX −K||2 (26)

Expanding and collecting like terms, we have

L(X,µ) =
1

2
XTAX + C + µ(GX −K)T (GX −K) (27)

=
1

2
XTAX + C + µ((GX)T −KT )(GX −K)

=
1

2
XTAX + C + µ(XTGT −KT )(GX −K)

= (
1

2
XTAX + µXTXGTG)− 2µKTGX + (C + µKTK)

= XT (
1

2
A+ µGTG)X − 2µKTGX + (C + µKTK)

= XTApX + UTX + V (28)
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where Ap = 1
2A + µGTG is of dimension n × n,

UT = −2µKTG is of dimension 1 × n and
V = C + µKTK is of dimension 1× 1.

Equation (28) is a quadratic programming problem
which can be solved by using the Conjugate Gradient
Method (CGM).

4 The Conjugate Gradient Algorithm
The Conjugate Gradient Algorithm is given as follows

[Yang, Cao, Chung and Morris, 2005]:

Step 0. With the iteration number k = 0, find the
objective function value f0 = f(x0) for the initial
point x0.
Step 1. Initialize the inside loop index, the tem-
porary solution and the search direction vector to
n = 0, x(n) = xk and s(n) = −gk = −g(xk),
respectively, where g(x) = is the gradient of the
objective function f(x).
Step 2. For n = 0 to N − 1, repeat the following
things:
Find the (optimal) step size

αn = ArgMinαf((xn) + αs(n)) (29)

and update the temporary solution to

x(n+ 1) = x(n) + αns(n) (30)

and the search direction vector to

s(n+ 1) = −gn+1 + βns(n) (31)

with

βn =
[gn+1 − gn]

T gn+1

gTn gn
(Polak −Ribière)

(32)
or

βn =
gTn+1gn+1

gTn gn
(Fletcher −Reeves) (33)

Step 3. Update the approximate solution point to
xk+1 = x(N), which is the last temporary one.
Step 4. If xk ≈ xk−1 and f(xk) ≈ f(xk−1), then
declare xk to be the minimum and terminate the
procedure. Otherwise, increment k by one and go
back to Step 1.

5 The Analytical Solution
Lemma 5.1. Consider

J(w) =

∫ t1

t0

f(t, x(t), w(t))dt (34)

Subject to ẋ(t) = g(t, x(t), w(t)), x(t0) = x0.(35)

Suppose that f(t, x, w) and g(t, x, w) are both contin-
uously differentiable functions in their three arguments
and concave in x and w. Suppose w∗ is a control, with
associated state x∗, and λ a piecewise differentiable
function, such that w∗, x∗, and λ together satisfy on
t0 ≤ t ≤ t1:

fw + λgw = 0, (36)
λ′ = −(fx + λgx), (37)

λ(t1) = 0, (38)
λ(t) ≥ 0. (39)

Then for all controls w, we have

J(w∗) ≥ J(w). (40)

Proof. See [Lenhart and Workman, 2007]

Lemma 5.2. Given the optimal control w∗(t) propor-
tional to the solution x∗(t) of the state system at a con-
stant rate m ∈ R that minimizes the performance in-
dex J(x,w) over [0, T ], then there exists a unique so-
lution that satisfies the condition a + bm < 0 with
the proportional control constant and optimal objec-

tive values defined as m = −1
b

{
a +

√
pb2+qa2

q

}
and

J∗(m) =
x2
0(p+qm2)
4(a+bm)

{
e2(a+bm)t − 1

}
respectively.

Proof. See [Olotu and Dawodu, 2013]

The proof gives the general analytical solution to the
proportional control problem under consideration as
follows:

m = −1

b

{
a+

√
pb2 + qa2

q

}
(41)

x(t) = x0e
(a+bm)t, t ∈ [0, T ] (42)

w(t) = mx(t) (43)

J∗(m) =
x2
0(p+ qm2)

4(a+ bm)

{
e2(a+bm)t − 1

}
(44)

where m is the proportional control constant, x(t)
is the state variable, w(t) is the control variable
and J∗(m) is the optimal objective value. In order
to control the exponential growth of J∗(m) for in-
finitely large values of t, the restriction a + bm < 0
was imposed in the process of obtaining the solution.
This helps to guarantee the existence, convergence and
asymptotic stability of the solution.
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6 Numerical Examples and Results
6.1 Example 1
Consider a one-dimensional optimal control problem

Minimize J(x,w) =
1

2

∫ 5

0

(2x2(t) + w2(t))dt

Subject to ẋ(t) = 2x(t) + 3w(t), x(0) = 1, 0 ≤ t ≤ 5

Here, p = 2, q = 1, a = 2, b = 3 and x0 = 1.

The analtyical objective value is JA = 0.37168976
and the numerical objective value from the Conju-
gate Gradient based Penalty Function Method using
MATLAB R⃝ is JN = 0.37167224. We take µ = 100,
Tol = 10−5, and h = 0.25.
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Figure 1. Separate Graphs of State and Control against Time
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Figure 2. Joint Graphs of State and Control against Time

6.2 Example 2
Minimize a population, with exponential growth,

modelled by

Minimize J(x,w) =
1

2

∫ 1

0

(x2(t) + w2(t))dt

Subject to ẋ(t) = x(t) + w(t), x(0) = 1.

In this case, p = 1, q = 1, a = 1, b = 1 and x0 = 1.

The analtyical objective value is JA = 1.13575983
and the numerical objective value from the Conju-
gate Gradient based Penalty Function Method using
MATLAB R⃝ is JN = 1.13577134. We take µ = 100,
Tol = 10−5, and h = 0.25.
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Figure 3. Separate Graphs of State and Control against Time
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Figure 4. Joint Graphs of State and Control against Time

6.3 Example 3
Let x(t) represent the number of tumor cells at time
t (with exponential growth factor α) and w(t) the drug
concentration. Minimize, simultaneously, the number
of tumor cells at the end of the treatment period and the
accumulated harmful effects of the drug on the body if
the general form of the problem is

Minimize J(x,w) =
1

2

∫ T

0

(2x2(t) + 2w2(t))dt

Subject to ẋ(t) = αx(t)− w(t), x(0) = x0 > 0.

Take T = 4, α = 0.35 and x0 = 2.

Now, p = 2, q = 2, a = 0.35 and b = −1.

The analtyical objective value is JA = 5.63674883
and the numerical objective value from the Conju-
gate Gradient based Penalty Function Method using
MATLAB R⃝ is JN = 5.63669538. We take µ = 100,
Tol = 10−5, and h = 0.25.
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Figure 5. Separate Graphs of State and Control against Time

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.5

0

0.5

1

1.5

2

2.5

Time (t)

S
ta

te
 a

nd
 C

on
tr

ol

 

 
State
Control

Figure 6. Joint Graphs of State and Control against Time

6.4 Convergence Analysis of Results
Definition 6.1. Given that xk ⊂ Rn is a sequence of
solutions xk that approaches a limit x∗ (i.e. xk → x∗),
then the error e(xk) = ek such that e(xk) = ek =
||xk − x∗|| ≥ 0, ∀xk ⊂ Rn and e(x∗) ̸= 0.
The convergence ratio β can be expressed as:

β = lim
k→∞

ek+1

ek
= lim

k→∞

||xk+1 − x∗||
||xk − x∗||

, ∀k (45)

If β = 0, convergence is said to be superlinear.
If 0 < β < 1, convergence is said to be linear.
If β = 1, convergence is said to be sublinear.

Considering the results for Problem 1, we obtained the
convergence ratio profile of our scheme as shown in the
table below. The profile is computed with respect to the
Penalty Parameter µ. J is the Objective Value and β is
the Convergence Ratio.

Table 1. The Convergence Ratio Profile

µ J β

1.0× 102 0.37147256 0.09932549

1.0× 103 0.37165241 0.09092986

1.0× 104 0.37167044 0.00000000

1.0× 105 0.37167224 0.00000000

The convergence ratio profile shows that for increas-
ing values of the penalty parameter µ, the convergence

ratio β → 0 very fast. The analysis shows that the con-
vergence is superlinear which is an improvement on the
work presented by [Olotu and Dawodu, 2013]. This is
an agreeable convergence for optimization algorithms.

7 Conclusion
This research work has shown the efficiency of the

conjugate gradient method in solving constrained pro-
portional control problems which are transformed to
unconstrained problems by using the much celebrated
penalty function method. A wide array of problems in
the fields of engineering and the life sciences can be
solved reliably by using the new algorithm developed
which converges faster than existing algorithms.
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