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Abstract
This paper studies the problem of the fault estimation

for a class of time-varying faults using output probabil-
ity density function (PDF). In particular, the spacecraft
control system is studied. First, the attitude control of
the nonlinear model with uncertainties is given. Then,
the measured output is viewed as a stochastic process
and its PDF is modeled, which leads to a determinis-
tic dynamical model including nonlinearities and un-
certainties. A new adaptive fault diagnosis algorithm is
proposed to improve the performance of the fault esti-
mation. The proposed algorithm contains both the pro-
portional and the integral term. The proportional term
can improve the speed of the fault estimation, while
the integral term can eliminate estimation error. Then,
based on the linear matrix inequality (LMI) technique,
a feasible algorithm is explored to find the designed pa-
rameters. Finally, simulation results of the spacecraft
are given to show the efficiency of the proposed ap-
proach.
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1 Introduction
Increased productivity requirements and stringent per-

formance specifications lead to more demanding oper-
ating conditions of many engineering systems. Such
conditions increase the possibility of system fail-
ures. Sensor, actuator or plant failures may drastically
change the system behavior, resulting in degradation
or even instability. As an important aspect for prac-
tical processes, such as spacecraft, large-scale chemi-
cal engineering processes, biochemical processes and
biodiesel processes, the safety and reliability problem

∗This work of this author was supported by the Czech Science
Foundation through the research grant No. P103/12/1794.

of control system has long been investigated [Ruiyun et
al., 2011], [Yuhai, Ruiyun and Gang, 2012] and [Liy-
ing et al., 2012]. In order to improve efficiency, the
reliability can be achieved by the fault tolerant con-
trol (FTC), which relies on early detection of faults,
using fault detection and isolation (FDI) procedures.
So FDI has become an attractive topic and received
considerable attention during the past two decades. In
such a way, FTC and FDI belong to the recent control
theoretic investigation mainstream, dealing with cer-
tain abrupt changes in models, similarly to the multi-
agent systems, see [Proskurnikov, 2012] and references
within there. Most conventional fault detection ap-
proaches are designed for nonlinear stochastic system,
and they are based on some inherent mathematical re-
dundancy of the combination of the system and the ob-
server. Stochastic methods are widely spread to han-
dle the control and estimation under uncertainty, see
[Rigatos, 2012; Dolinsky and Čelikovský, 2012] and
references within there. The commonly used nonlin-
ear stochastic system for FDI is [Guo and Wang, 2005;
Wand and Daley, 1996; Jian, Staroswiecki and Coc-
quempot, 2006; Zhang, Guoi and Wang, 2006]

ẋ(t) = Ax(t) + g (x(t), t) +Bu(t) + Ef c(t) (1)
y(t) = r (x(t), u(t), ξ(t), f c(t)) (2)

where x(t) is the state vector, u(t) is the known in-
put vector, y(t) is the output vector measured by sen-
sors, g (x(t), t) is a continuous nonlinear vector func-
tion. Further, f c(t) is the unknown fault input vec-
tor, which is also known as the actuator fault and ξ(t)
is the output noise. Various FDI techniques are de-
signed for the system (1) and (2) including filter-based
or observer-based approaches. Up to now, most ap-
proaches concentrate on Gaussian systems. In fact,
some processes exhibit asymmetric non-Gaussian dis-
tribution, the expectation of the traditional Kalman fil-
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tering approach is obviously insufficient to character-
izing such processes and hence the probability den-
sity function (PDF) approach is needed. The PDF
approach is actually a shape control method. To
approximate a kind of distribution, one way is to
use static-based approach, such as Monte-Carlo ap-
proach or particle filter approach, where Bayesian
lemma and likelihood method are used. Another way
is to use function or functional approach, such as
spline approach [Wang and Lin, 2000], [Wang, 2001],
[Guo and Wang, 2004] and [Guo and Wang, 2005]
where B-spline functions are used.
In references [Wang and Lin, 2000], [Wang, 2001],

[Guo and Wang, 2004] and [Guo and Wang, 2005],
a class of general stochastic system has been investi-
gated, an output PDF approach via B-spline functions
has been presented. The B-spline bases represent the
space information of an output distribution while the
weighting functions reflect its time-varying informa-
tion. The output PDF approach transfers the corre-
sponding stochastic process to a deterministic dynam-
ical system, and hence the corresponding stochastic
problem is transferred to a deterministic one.
In this paper, the problem of the fault estimation for

the spacecraft using angular rate supplied by momen-
tum wheel actuators as inputs is investigated. A rigid
spacecraft in general is controlled by three independent
actuators and it is well known that three momentum
wheels can be used to accomplish arbitrary reorienta-
tion maneuvers of the spacecraft using smooth feed-
back control law. Three reaction wheels are considered
as input actuators. Fault scenarios of reaction wheel
usually include high motor frictions; drop of bus volt-
age, unusual motor disturbances and unexpected cur-
rent variations, these anomalies can be conceptualized
as form of time-varying faults and constant faults.
Obviously, even before our research to be presented

here, many researchers have paid more attention to
adaptive fault diagnosis observer using PDF as well.
More specifically, the main limitations in the use of
this conventional approach are twofold. First, perfor-
mance requirements of the fault estimation, i.e., speed
and accuracy. Second, existence conditions of adaptive
fault diagnosis observer have not been given explicitly
in existing works, which adds difficulties for the design
of adaptive fault diagnosis observer. Therefore, inves-
tigating an effective solutions to overcome the above
difficulties is necessary, and thus motivates the research
presented in this paper.
More specifically, our objective is to analyze the

model-based fault estimation scheme and to develop
a general framework for a novel adaptive fault diag-
nosis approach using PDF. This extends earlier results
of fault estimation using adaptive fault diagnosis algo-
rithm [Nguyen and Čelikovský, 2012] in order to be
applicable to the rigid spacecraft control problem an-
alyzed in the current paper as well. In such a way,
the current paper contributes to the important interdic-
siplinary area between physics and control being the

flight and aerospace applications, see [Amelin, 2012]
and references within there.
The rest of this paper is organized as follows. Sec-

tion 2 gives system description for the spacecraft atti-
tude control system with actuator fault and background
on the conventional adaptive fault diagnosis approach
using output PDF. The novel adaptive algorithm for ac-
tuator fault estimation is presented in Section 3. Sim-
ulation results in Section 4 show the effectiveness of
the proposed approach. The concluding remarks are
given in the final section. In the following, the notation
∥ · ∥ denotes the Euclidean norm of the vector on R3.
The dimensions of the matrices, if not stated explicitly,
are assumed to be compatible. The identity and zero
matrices are denoted by I and 0, respectively, with ap-
propriate dimensions.

2 Mathematical Model of the Spacecraft and
Problem Formulation

The equations describing the attitude control problem
are basically those of a rotating rigid body with extra
terms describing the effect of the control torques. They
therefore consist of kinematic equations relating the an-
gular position with the angular velocity, and dynamic
equations describing the evolution of angular velocity.

2.1 Kinematic Equations
The orientation of the spacecraft can be specified us-

ing various parametrization of the special orthogonal
group SO(3). We describe the angular position by a
rotation matrix R. R transforms a inertially fixed set
of orthonormal axes x1, x2, x3, denoted I , into a set
of orthonormal axes r1, r2, r3, denoted Q, of the same
orientation, and fixed in the spacecraft, with the origin
at the center of mass. We have

Rxi = ri, i = 1, 2, 3.

Thus, the equation describing the orientation of the
rigid body is

Ṙ = S(ω)R, (3)

where ω is the absolute angular velocity of the space-
craft measured in Q and S(ω) is a 3×3-matrix defined
by:

S(ω) =

 0 ω3 ω2

−ω3 0 ω1

ω2 −ω1 0

 .
Here ω =

∑3
i=1 ωiri and the operator S is related to

the vector product in R3 via

S(a)b = b× a.
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Figure 1: Spacecraft system

It is easily shown that Eq. (3) may be written as

R = RS(Rtω). (4)

Then, the rows v of R satisfy v̇ = Rtω × v, the usual
equation for the evolution of a vector v rotating with
angular velocity Rtω in the inertial axes I . The an-
gular position may be described locally by three an-
gles ψ, θ, ϕ, which represent consecutive close rotation
about r1, r2, r3. Setting ri to be the standard i-the ba-
sis vector in R3 we obtain the kinematic equations as
followsω1

ω2

ω3

 =

 ϕ̇0
0

+

 1 0 0
0 cosϕ sinϕ
0 −sinϕ cosϕ

0

θ̇
0

+ 1 0 0
0 cosϕ sinϕ
0 −sinϕ cosϕ

 cosθ 0 −sinθ
0 1 0

sinθ 0 cosθ

 0
0

ψ̇

 .
Therefore,

 ϕ̇θ̇
ψ̇

 =

 1 sinϕ.tanθ cosϕ.tanθ
0 cosϕ −sinϕ
0 sinϕ/cosθ cosϕ/cosθ

ω1

ω2

ω3

 . (5)

Although these angles do not coincide with the usual
definition of Euler angles, they give rise to a convenient
set of linearized equations. Clearly, the Euler angles are
limited to the range:
−π ≤ ϕ ≤ π,−π/2 < θ < π/2,−π ≤ ψ ≤ π.

2.2 Dynamic Equations
Let J be the inertia matrix of the spacecraft, and bi,

the axes about which the corresponding control torque
∥bi∥ui is applied by means of opposing pairs of gas
jets. Further, m will designate the number of control
torques. The following closed set of equations describe
the attitude control problem.

Ṙ = S(ω)R,

Jω̇ = S(ω)Jω +
3∑

i=1

biui. (6)

2.3 Actuator Fault
Defining the state vector as x = [ϕ θ ψ ω1 ω2 ω3]

T ,
the attitude dynamics of the spacecraft with actuator
fault is summarized by combining (5) and (6)

ẋ(t) = Akx(t) + gk (x(t), t) +Bkuk(t) + Ekf(t)
(7)

y(t) = r (x(t), u(t), ξ(t), f ck(t)) (8)

where uk = [u1 u2 u3]
T denotes control torques

that are applied to the three axes, Bk = Ek =[
03×3 J

−1
]T

,

Ak =



0 0 ω0 1 0 0
0 0 0 0 1 0

−ω0 0 0 0 0 1
−3ω2

0(J2−J3)
J1

0 0 0 0 0

0
−3ω2

0(J1−J3)
J2

0 0 0 0

0 0 0 0 0 0


,

gk(x(t), t) =



0
−ω0

0
(J3−J2)ω2ω3

J1
(J1−J3)ω1ω3

J2
(J2−J1)ω1ω2

J3


, (9)

J = [J1, J2, J3]
T stands for principal moments of

inertia in roll, pitch and yaw axes. Further y(t) is
the measured output, ξ(t) is the output noise and
gk(x(t), t) is a continuous nonlinear function satisfying
Lipschitz condition. More specifically, let us assume
that there exists a known Lipschitz constant Lg > 0
such that

∥gk (x1(t), t)− gk (x2(t), t) ∥ ≤ Lg∥x1(t)− x2(t)∥

for any x1(t) and x2(t). Moreover, f ck(t) represents
the actuator faults. The failure f ck(t) = β(t − tf )f(t)
can be treated as an additive signal, where the function
β(t− tf ) is given by

β(t− tf ) =

{
0, t ≤ tf
1, t > tf

(10)

where tf is the time of fault occurring.
Let us note that only the continuous time-varying ac-

tuator fault is addressed in this paper. That is, f ck(t) is
zero prior to the failure time (t ≤ tf ) and it is equal to
f(t) after the failure occurs (t > tf ). The fault effect is
modelled by a ”fault pattern”, described by the distribu-
tion matrix Ek and a ”fault parameter” f(t), which can
be time varying, and is supposed to be norm bounded.
Throughout the rest of the paper f(t) will stand for the
above mentioned fault parameter, also referred to as the
fault vector.
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Assumption 1. It is assumed that the fault vector
and its time derivative are bounded, i.e., there exist
two constants f0 ∈ R+ and f1 ∈ R+ such that:
∥f(t)∥ ≤ f0, ∥ḟ(t)∥ ≤ f1.

2.4 Conventional Adaptive
Fault Diagnosis Observer Using PDF

Suppose that the measured output satisfies y(t) ∈
[a, b]. Based on the statistical information of sam-
ple data, the distribution function of the output sam-
ple can be obtained, and the corresponding probabil-
ity density function (PDF) can be further studied. Of
course, the output distribution law is usually compli-
cated, which often results in the complexity of the out-
put PDF. To obtain the output PDF, the B-spline ap-
proximation technique is often used. The conditional
probability of output y(t) lying inside [a, ξ], ξ ≤ b is
defined by P{a ≤ y(t) ≤ ξ}, which can be expressed
as

P{a ≤ y(t) ≤ ξ} =

∫ ξ

a

γ(z, u(t), f(t))dz, (11)

where γ(z, u(t), f(t)) represents the output PDF and
z is the variable defined on [a, b]. Similar to
[Guo and Wang, 2004] and [Guo and Wang, 2005], we
use the following square root B-spline approximation
technique to model γ(z, u(t), f(t)):

√
γ(z, u(t), f(t)) =

n∑
i=1

vi (u(t), f(t)) bi(z) (12)

where bi(z) (i = 1, 2, . . . , n) are pre-specified ba-
sis functions defined on [a, b] and vi(u(t), f(t)) (i =
1, 2, . . . , n) are corresponding weights of such an func-
tion. Let

B(z) = [b1(z) b2(z) · · · bn−1(z)]

V (u(t), f(t)) = [v1 (u(t), f(t)) · · · vn−1 (u(t), f(t))]
T
,

and let

Λ1 =

∫ b

a

B(z)TB(z)dz, Λ2 =

∫ b

a

B(z)T bn(z)dz,

Λ3 =

∫ b

a

b2n(z)dz ̸= 0.

Then, it can be easily verified that (12) can be rewritten
as (see [Guo and Wang, 2004] for details)

√
γ(z, u(t), f(t)) = B(z)V (t) + h (V (t)) bn(z),

(13)

where

h (V (t)) =

√
Λ3 − V T (t)Λ0V (t)

Λ3
(14)

and Λ0 = Λ1Λ3 − Λ2Λ
T
2 . Here, V (u(t), f(t)) has

been abbreviated as V (t). Then the conventional Lip-
schitz condition is assumed to be satisfied for h (V (t))
in (13) within its operated region, i.e., for any V1(t) and
V2(t), there exists a known Lipschitz constant Lh > 0
satisfying

∥h (V1(t)) ∥ − ∥h (V2(t)) ∥ ≤ Lh∥V1(t)− V2(t)∥.

The output PDF model is set up if V (t) is modeled.
Suppose that V (t) satisfies

V (t) = Cx(t), (15)

where C is known matrix. Then system (7-8) can be
written as the follows model

ẋ(t) = Akx(t) + gk (x(t), t) +Bkuk(t) + Ekf(t)
(16)

V (t) = Cx(t) (17)

where V (t) is the weight vector.
In order to diagnose the fault, the conventional adap-

tive fault diagnosis observer is constructed as (see
[Guo and Wang, 2005] for details)

˙̂x(t) =Akx̂(t) + gk (x̂(t), t) (18)

+Bkuk(t) + Ekf̂(t) + Lε(t) (19)

V̂ (t) = Cx̂(t) (20)

ε(t) =

∫ b

a

q(z) (21)(√
γ̂(z, u(t))

√
γ(z, u(t), f(t))

)
dz (22)

where x̂(t) ∈ Rn is the observer state vector, f̂(t) ∈
Rr is an estimate of actuator fault f(t). Here, q(z) ∈
Rp×1 can be regarded as a pre-specified weighting vec-
tor defined on [a, b]. The residual signal ε(t) is formu-
lated as an integral of difference between the estimated
PDF and the measured PDF, V̂ (t) is the observer dy-
namic weight vector. Further, L ∈ Rn×p is the gain to
be determined.
Denote

ex(t) = x̂(t)− x(t), eV (t) = V̂ (t)− V (t),

ef (t) = f̂(t)− f(t), (23)
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then the error dynamic can be obtained

˙̂ex(t) = (A− LΓ1) ex(t) +G (ex(t))

− LΓ2 [h (Cx̂(t))− h (Cx(t))] + Eef (t)
(24)

eV (t) = Cex(t) (25)

where

G (ex(t)) = g (x̂(t))− g (x(t)) ,

Γ1 =

∫ b

a

q(z)B(z)Cdz,

Γ2 =

∫ b

a

q(z)bn(z)dz. (26)

It can be seen that√
γ(z, u(t), f(t)) = Γ1x(t) + Γ2h(Cx(t)) (27)

and √
γ̂(z, u(t)) = Γ1x̂(t) + Γ2h(Cx̂(t)). (28)

Then the residual signal ε(t) can be shown to satisfy

ε(t) = Γ1ex(t) + Γ2 [h(Cx̂(t))− h(Cx(t))] . (29)

Since it has been assumed that the pair (Ak, Γ1) is
observable, the observer gain matrix L must be deter-
mined such that (Ak − LΓ1) is a stable matrix.
In general, f(t) represents the loss of actuator effec-

tiveness and it is only considered based on the conven-
tional algorithm, that is, ḟ(t) = 0. The derivative of
ef (t) with respect to time can be written as

ėf (t) =
˙̂
f(t). (30)

The following theorem was obtained in
[Guo and Wang, 2005].

Theorem 1. Under Assumption 1, given scalars λi >
0 (i = 1, 2), if there exist matrices P > 0, R with
appropriate dimension, F ∈ Rr×p, an observer gain
L ∈ Rn×p and constants κ > 0, θi (i = 1, 2, 3) such
that the following conditions hold


Π0 + κI P − ΓT

1 F
TΓT Π2 0 CTLT

h

P − ΓFΓ1 0 0 Π3 0
ΠT

2 0 −I 0 0
0 ΠT

3 0 −I 0
LhC 0 0 0 θ3I

 < 0,

(31)

and

L = P−1R,PEk = CF, (32)

where
Π0 = (PA−RΓ1)+(PA−RΓ1)

T + 1
λ1
CTLT

hLhC+
1
λ2
LT
g Lg, Π2 =

[
λ1RΓ2 λ2PG θ1R

]
and Π3 =[

θ2ΓF θ3ΓFΓ2

]
, then the adaptive fault estimation

algorithm

˙̂
f(t) = −ΓFε(t) (33)

can realize

lim
t→∞

ex(t) = 0 and lim
t→∞

ef (t) = 0,

where the symmetric positive definite matrix Γ ∈ Rr×r

is the learning rate.

Remark 1. Theorem 1 gives a fault diagnosis algo-
rithm via LMI formulation. Note that, by tuning the
parameter θi, (i = 1, 2, 3) and κ, as well as Γ, the di-
agnostic error ef (t) can be guaranteed within a satis-
factory range. From (33), actuator fault estimate using
above method can be expressed as

f̂(t) = −ΓF

∫ t

tf

ε(τ)dτ. (34)

In fact, the conventional adaptive fault diagnosis ob-
server using the output PDF is only integral term de-
spite it can be guaranteed that the estimate of constant
fault is unbiased. But this method is limited to systems
with time-varying fault. The main limitations in use of
the conventional approach are twofold. Firstly, when
a larger learning rate is chosen, rapid fault estima-
tion can be achieved, but bigger overshoot is unavoid-
able. Secondly, when a small learning rate is selected,
the overshoot can be overcome at the cost of slow re-
sponses. The existing shortcomings are the main aims
for us to develop suitable technique how to improve the
performance of the fault estimation. As a matter of fact,
our main contribution in this paper is to further extend
the result presented in Theorem 1.

3 Adaptive Fault Diagnosis Observer for Time-
Varying Faults

First, let us recall the following well-known inequal-
ity to be used later on.

Lemma 1. Given scalar µ > 0 and a symmetric posi-
tive definite matrix P , the following inequality holds

2XTPY ≤ 1

µ
XTP 2X + µY TY. (35)

As for time-varying faults, due to ḟ(t) ̸= 0, the deriva-
tive of ef (t) defined in (23) with respect to time is

ėf (t) =
˙̂
f(t)− ḟ(t). (36)
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Now we are ready to present the main result of this pa-
per. Namely, a novel adaptive fault diagnosis observer
is proposed to improve the performance of the time-
varying fault estimation. This main result is formu-
lated as the following theorem which gives a modified
version of the adaptive fault diagnosis observer using
output probability density function (PDF).

Theorem 2. Suppose that conditions (31) and (32) of
Theorem 1 are satisfied. If for scalars σ, µ > 0, there
exist symmetric positive definite matrix P ∈ Rn×n and
matrix F ∈ Rr×p satisfying

Π −PLΓ2 ET
k P − 1

σE
T
k P (Ak − LΓ1)− FΓ1

∗ −µI 1
σE

T
k PLΓ2 − FΓ2

∗ ∗ 1
σµI −

2
σE

T
k PEk

 < 0

(37)

where Π = (Ak − LΓ1)
TP + P (Ak − LΓ1) +

1
µ +

µL2
gP

2 + µ
σL

2
gE

T
k PP

TEk + µL2
hC

TC and ∗ denotes
the symmetric elements in a symmetric matrix. Then
after a fault occurs the adaptive diagnosis algorithm

˙̂
f(t) = −ΓF (ėV (t)− σε(t)) (38)

guarantees that variables ex(t) and ef (t)) are uni-
formly bounded.

Proof 1. Choose the following Lyapunov function

Ve(t) = eTx (t)Pex(t) +
1

σ
ef (t)

TΓ−1ef (t). (39)

From (23) and (38) the derivative with respect to time
of Ve(t) is

V̇e(t) = eTx (t)
[
P (Ak − LΓ1) + (Ak − LΓ1)

TP
]
ex(t)

+ 2eTx (t)PG (ex(t))− 2eTx (t)PLΓ2h(Cex(t))

+ 2eTf (t)E
T
k E

T
k Pex(t)−

2

σ
eTf (t)F (ėV (t)

+ σε(t))− 2

σ
eTf (t)Γ

−1ḟ(t). (40)

Using (32) we obtain

− 2

σ
eTf (t)F (ėV (t) + σε(t))

= − 2

σ
eTf (t)E

T
k P ėx(t)− 2eTf (t)Fε(t). (41)

Substituting (29) and (41) into (40) yields

V̇e(t) = eTx (t)
[
P (Ak − LΓ1) + (Ak − LΓ1)

TP
]
ex(t)

+ 2eTx (t)PG (ex(t))− 2eTx (t)PLΓ2h(Cex(t))

+ 2eTf (t)E
T
k Pex(t)−

2

σ
eTf (t)E

T
k P

[
(Ak − LΓ1)

ex(t) +G(ex(t))− LΓ2h(Ekex(t)) + Ekef (t)
]

− 2eTf (t)F
[
Γ1ex(t) + Γ2h(Ekex(t)

]
− 2

σ
eTf (t)

Γ−1ḟ(t). (42)

As the nonlinear term h(Cex(t)) satisfies the Lips-
chitz condition, so for a scalar µ we have

µL2
he

T
x (t)C

TCex(t)− µhT (Cex(t))h (Cex(t)) ≥ 0.
(43)

From Lemma 1, it is easy to show that

2eTx (t)PG (ex(t)) ≤
1

µ
eTx (t)ex(t) + µL2

ge
T
x (t)P

2ex(t),

2

σ
eTf (t)Γ

−1ḟ(t) ≤ 1

µσ
eTf (t)e

T
f (t) +

µ

σ
ḟ(t)Γ−1Γ−1ḟ(t)

≤ 1

µσ
eTf (t)e

T
f (t) +

µ

σ
f21λmax(Γ

−1Γ−1). (44)

Therefore substituting (44) into (42) and calculating
the derivative of Ve(t) yields

V̇e(t) =e
T
x (t)

[
P (Ak − LΓ1) + (Ak − LΓ1)

TP
]
ex(t)

+
1

µ
eTx (t)ex(t) + µL2

ge
T
x (t)P

2ex(t)

− 2eTx (t)PLΓ2h(Cex(t)) + 2eTf (t)E
TPex(t)

− 2

σ
eTf (t)E

T
k P (Ak − LΓ1)ex(t)

+
1

µσ
eTf (t)ef (t)

+
µ

σ
L2
ge

T
x (t)E

T
k PP

TEkex(t)

+
2

σ
eTf (t)E

T
k PLΓ2h(Cex(t))

− 2

σ
eTf (t)E

T
k PEkef (t)

− 2eTf (t)F
[
Γ1ex(t) + Γ2h(Ekex(t)

]
+

1

µσ
eTf (t)e

T
f (t) +

µ

σ
f21λmax(Γ

−1Γ−1)

+ µL2
he

T
x (t)C

TCex(t)

− µhT (Cex(t))h (Cex(t))

= Φ(t)TΩΦ(t) + δ (45)
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where

Ω =

Π −PLΓ2 E
T
k P − 1

σE
T
k P (Ak − LΓ1)− FΓ1

∗ −µI 1
σE

T
k PLΓ2 − FΓ2

∗ ∗ 1
σµI −

2
σE

T
k PEk

 ,
Π = (Ak − LΓ1)

TP + P (Ak − LΓ1) +
1

µ
+ µL2

gP
2

+
µ

σ
L2
gE

T
k PP

TEk + µL2
hC

TC,

Φ(t) =

 ex(t)
h(Cex(t))
ef (t)

 , δ = µ

σ
f21λmax(Γ

−1Γ−1).

Under persistently exciting input u(t), if
the matrix Ω < 0, we can obtain that
V̇e(t) < −λmin(Ω)∥Φ(t)∥2 + δ. It follows that
V̇e(t) < 0 for λmin(Ω) > δ, which can guarantee
asymptotic convergence of estimation errors of both
the state and fault. Therefore, variables (ex(t), ef (t))
are uniformly bounded. This is the end of proof.

Remark 2. It it easy to shown that the inequality (37)
in Theorem 2 can be solved by LMI toolbox. But the
solving difficulty is added because of the equation L =
P−1R. More specifically, it is problem how to solve
(32) and (37) simultaneously. This open problem needs
to be addressed in the future.

4 Simulation Result and Analysis
In this section we consider the following spacecraft

attitude control system with the corresponding param-
eters to show the effectiveness of the proposed method.
The main inertia, J of the spacecraft is given as follows

J =

12.49 0 0
0 13.85 0
0 0 15.75

 kg.m2 (46)

and the orbital ω0 is 7.223 × 10−5[rad/s]. The state
vector is chosen as x = [ϕ θ ψ ω1 ω2 ω3]

T , there-
fore matrices Ak, Bk and continuous nonlinear func-
tion gk(x(t), t) can be obtained. For spacecraft attitude
control system, the six variable are available, so C is
identity matrix.
In this particular situation, an actuator fault will occur

in the input channel and the actuator fault distribution
matrix Ek = Bk. The square root output PDF can
be approximated by seven base functions, that is, for
i = 1, 2, . . . , 7,

bi(z) = exp(−(z − µi)
2σ−2

i ), (47)

where z ∈ [0, 0.5], µi = 0.003 + 0.006(i − 1), σi =

0.003. Selecting, q(z) = 1, it is easy to compute that

Γ1 =
[
0.0063 0.0075 0.0075 0.0075 0.0075 0.0075

]
,

Γ2 =
[
0.0075.

]
Solving (32) and (37) using Matlab LMI Toolbox, one
can obtain that

η = 1.5001, P =


1.91 0 0 0.2 0 0
0 1.91 0 0 0.2 0
0 0 0.91 0 0 0.2
0.2 0 0 1.95 0 0
0 0.2 0 0 1.95 0
0 0 0.2 0 0 1.95

 ,

R =


0.0102
0.0153
1.7344
−0.0070
−0.0003
0.3682

 , F =


0.016 0 0
0 0.0144 0
0 0 0.0127

0.1561 0 0
0 0.1408 0
0 0 0.1238


,

L = [0.0058 0.0081 1.9074 − 0.0042 − 0.0010 −
0.0068]T .
Taking the learning rate Γ =
diag(10, 10, 10, 10, 10, 10) and sampling time
T = 0.01s, the system is subject to the refer-
ence input u(t) = [1 1 1]T and the initial value
x(0) = [0, 0, 0, 0, 0, 0]T . In order to show that
proposed method is superior to the conventional
one, we will compare them with the following
simulations. There are two cases for actuator fault
f(t) = [f1(t) f2(t)]

T .
Assume that constant actuator fault is created as

f1(t) =

0, 0 ≤ t ≤ 3
0.6, 3 < t ≤ 10
0.3, 10 < t ≤ 20,

f2(t) = 0. (48)

The simulation results for constant fault estimation us-
ing conventional and the proposed method are shown
in Fig. 2 and Fig. 3.
Then the time-varying actuator fault is considered as

f2(t) =

{
0, 0 ≤ t < 3
0.2sin(5t− 10), 3 < t ≤ 20

f1(t) = 0.

(49)

Fig. 4 and Fig. 5 demonstrate the simulation results
for time-varying fault estimation using the above two
mentioned methods.
Simulation results for faults estimation are illustrated

in Figs. 2, 3, 4 and 5. From these simulations, it
can be seen that for constant fault, asymptotic conver-
gence of fault estimation error can be both achieved
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Figure 2: Constant fault f(t) and its estimate f̂(t) us-
ing the conventional

Figure 3: Constant fault f(t) and its estimate f̂(t) us-
ing the proposed method.

using the two methods. But the proposed method can
improve the performance of the fault estimation at the
faster speed. As for time-varying fault, the proposed
method can also achieve more satisfactory performance
of the time-varying estimation than the conventional
one. Compared with the conventional method for both
constant and time-varying fault, we can conclude that
the proposed approach provides much better perfor-
mance.

5 Conclusion and Outlooks
In this paper, a novel fault diagnosis scheme using out-

put probability density estimation is proposed to im-
prove the performance of the fault estimation. The
proposed method improves the speed of the fault es-
timation and eliminate steady estimation error simul-
taneously. The application of this design scheme to
a satellite attitude control system shows that the sys-
temic fault can be detected and estimated with satisfac-
tory performance. Unlike classical FDI problem, the
measured output of the system is viewed as a stochas-
tic process and its probability density function (PDF) is
modeled with B-spline functions, which leads to a de-
terministic space-time dynamic model including non-
linearities and uncertainties. For this model, a new
fault diagnosis approach has been presented using LMI
formulation. From simulation results, it can be seen
that, the proposed method can improve the perfor-
mance of the fault estimation, including constant and

Figure 4: Time-varying fault f(t) and its estimate f̂(t)
using the conventional

Figure 5: Time-varying fault f(t) and its estimate f̂(t)
using the proposed method.

time-varying fault. Simulation examples are given to
demonstrate the efficiency of the proposed approach.
Finally, there are still many open problems to be fur-

ther investigated. The first problem concerns condi-
tions about the solvability of LMI formulation for the
proposed method. The second problem concerns exten-
sion of the proposed algorithm to slow-drifting faults.
These problems are very difficult and they need to be
concerned in the future.
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