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Abstract
The problem of modeling the contact interactions in

tooth chain transmission is considered. Chain plates are
connected by pins consisting of two halves. Rolling of
two rigid pin halves without slip is called normal. Con-
tact forces are determined by deviation of actual rolling
from normal one. Contact interaction between teeth
of the chain and the sprockets takes place at contact
points. Special algorithm for the determination of con-
tact points is developed. The algorithm uses a tree-like
search structure consisting of circles embedded within
each other.
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1 Problem formulation

Figure 1. Tooth chain transmission model

The problem of modeling the contact interactions in
tooth chain transmission (Fig. 1) is considered. The
transmission consists of the tooth chain that connects
two sprockets. The chain consists of tooth plates that
are contacting the profiled teeth of the sprockets and
are connected by the pins. Planar motion is considered.

The assembly of two plates connected with pins is
shown in Fig. 2.

Figure 2. Schematic of tooth chain

The model of the tooth plate assumes that it consists
of two halves that are absolutely rigid with an elastic
connection. Each half has tooth profile that is designed
to contact the sprockets. Chain plates are connected
by pins consisting of two halves (see Fig. 2). When
relative rotation appears between the contacting halves
of the pins, they roll over each other. Sprockets have
contact profiles to interact with the plates.
During interaction between the pin halves, as well as

between the chain teeth and the sprockets’ teeth, there
develop normal and tangential contact forces. Descrip-
tion of the contact interactions in the framework of
finite element approach leads to very large computa-
tion time. In the paper we discuss special approaches,
which allows to significantly reduce the computation
time.

2 Contact interaction between pin halves
The concept of “normal rolling” is introduced to de-

note rolling of rigid pin halves without slip. Fig. 3
shows the two rolling contours in the position on
straight section of the chain.
Let the contours of the pin halves in the coordinate

systems rigidly connected with these halves be de-
termined by parametric equations r− = r−(s) and
r+ = r+(s). Initial contact point that corresponds to
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Figure 3. Geometry of normal rolling case for pin halves

the position of pins when the chain is straight is denoted
A∗. When two rigid bodies roll over each other without
slip, the distances calculated along the arcs of the con-
tours from the initial contact point should be the same.
When rolling without slip, the point A+ will coincide
with A− after relative rotation of the two pin halves to
angle γ. It makes it possible to find the values of pa-
rameters s− and s+ as the functions of γ: s− = s−(γ),
s+ = s+(γ) and further obtain the values of radius-
vectors of points A− and A+, rA− = rA−(s−(γ)) and
rA+ = rA+(s+(γ)), as well as the unit vectors of tan-
gents and normal to the contours τ± = τ±(s±(γ)),
n± = n±(s±(γ)) in coordinate systems attached to
corresponding pin halves.
In the dynamic model the position of every pin half

is determined by independent generalized coordinates
and the geometry of rolling is different from normal
rolling case. For real rolling there develops the de-
formation of the surfaces of pin halves and the forces
pointing along their normal vectors that prevent pene-
tration of one pin half into the other. Besides, when
the pin halves slip with respect to each other, the fric-
tion forces develop pointing along the tangents to the
contact surfaces to resist it.
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Figure 4. Position of contacting surfaces of pin halves

The position of contacting surfaces of pin halves in

the framework of the developed model is presented in
Fig. 4. The pin halves are shown penetrating each other
(in reality, of course, this is not the penetration, but the
deformation of the contact layer). Points A− and A+ in
Fig. 4 are the points that are in contact in normal rolling
case (for known angle γ of relative rotation between
the pin halves). Vectors τ±, n± are the vectors of
tangents and normals to the contours of pin halves in
normal rolling case.
Further we assume that the value of elastic normal

force at the contact surface is determined by the depth
of “penetration” between the two pin halves:

∆n = (rA− − rA+) ·n− (1)

The elastic normal force Fn,e that appears on the con-
tact surface is estimated basing on the known solution
of the problem of contact interaction between two cir-
cular cylinders with parallel axes. The formula that
connects the magnitude of approach between the paral-
lel axes of contacting cylinders, ∆̃, and the force acting
on the unit length of the cylinder, q, for cylinders with
the same Young’s modulus, E, Poisson’s ratio ν = 0.3,
takes the form [Birger and Panovko, 1968]:

∆̃ = 0.579
q

E

(
ln

4R1R2

b2
+ 0.814

)
, (2)

where R1, R2 are the radii of the cylinders, and

b = 1.522
√

q

E

R1R2

R1 + R2
(3)

is the width of the contact patch.
We use formula (2) assuming

∆n = ∆̃, Fn,e = qlpin (4)

where lpin is the pin length.
Except the elastic normal force Fn,e, the damping

force acting along the normal vector also exists. The
normal damping force, Fn,d, is proportional to the de-
formation rate ∆̇n:

Fn,d = bn,d∆̇n, (5)

where bn,d — normal damping coefficient.
The friction force acting along the tangent, Rτ , is pro-

portional to the normal elastic force Fn,e and the fric-
tion coefficient f :

Rτ = fFn,e sign(∆̇τ ). (6)

where the friction coefficient f is a function of the ab-
solute value of slip speed ∆̇τ : f = f(|∆̇τ |), ∆τ =
(rA− − rA+) · τ−.



3 Contact interaction of chain teeth and sprockets
In the model of contact interaction, the following as-

sumptions are made. In motion, when the boundaries
of the bodies intersect, the contact interaction occurs,
that takes place in contact points, where forces are ap-
plied to contacting bodies.
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Figure 5. Local geometry of contact

Fig. 5 shows two bodies with boundaries intersecting
at points A and B. We define the contact point, C,
as the point lying in the middle between the points A
and B: if the positions of A and B are respectively rA

and rB , then the position of point C, rC , is

rC =
1
2
(rA + rB). (7)

The definitions of normal vector, n, and tangent vec-
tor, τ , at contact point C also involve the positions of
the intersection points A and B:

τ =
rB − rA

|rB − rA|
, n = τ × e3. (8)

Contact deformation at point C, ∆n, is defined as the
distance between points C1 and C2 along the normal
vector n (see Fig. 5):

∆n = n · (rC1 − rC2). (9)

The points C1 and C2 lie in the middles of the arcs
of the boundaries between the intersection points A
and B.
Forces in the contact point are similar to the forces be-

tween pin halves. The normal force consists of elastic
component Fn,e (which can be calculated using for-
mulas similar to (2–4)) and damping component Fn,d

(which can be calculated using formula similar to (5)).

The tangential friction force Rτ is calculated using for-
mula similar to (6) with the tangential speed at contact
point, vτ , defined as follows:

vτ = (vC1 − vC2) · τ , (10)

where vC1 and vC2 are the speeds of points C1

and C2.
Finding intersection points of the boundaries of two

bodies, they are approximated by polygons. For the
adequate modeling of the geometry of teeth of the
chain and the sprockets, the polygons have large num-
ber of vertices. Typically, the polygon approximat-
ing the outer boundary of a plate half has hundreds of
vertices, and the polygon approximating the boundary
of the sprocket has thousands of vertices. A straight-
forward algorithm for determination of intersection
points would perform an intersection test for each pair
of edges of two polygons; this would lead to 105–106

tests in our case, which is unacceptable due to the per-
formance reasons. Special technique was implemented
to find the intersection points efficiently, similar to the
approach proposed in [Palmer and Grimsdale, 1995]
for the 3D case.
The main idea of the proposed algorithm is to reduce

the number of intersection tests. The polygons approx-
imating the boundaries of the moving rigid bodies do
not change their shapes. This allows building a static
search structure for each of the polygons. The genera-
tion of the search structure takes the time O(K lnK),
K being the number of vertices, and is only done once,
at the beginning of simulation.
Suppose that the polygon has K vertices,

V1, . . . , VK , and K edges, e1, . . . , eK (first
edge connects V1 with V2, i-th edge connects Vi with
Vi+1, K-th edge connects VK with V1). The search
structure consists of circles embedded within each
other, and it is built as follows.

1. Generate the initial covering of all edges. The cov-
ering consists of circles, each covering a certain
edge and having the diameter equal to edge length.
The circles of the initial covering are denoted as
o1
1, o1

2, . . . , o1
K1

(K1 = K), and their set — as
O1.

2. Set the covering counter, k, to 1.
3. Generate the (k+1)-th covering, Ok+1, that covers

the k-th covering, Ok. The following rule is used:
the i-th circle of the new covering, ok+1

i must con-
tain two circles of the previous covering, ok

2i−1 and
ok
2i: ok+1

i ⊃ ok
2i−1 ∪ ok

2i. If Kk is even, then the
new covering consists of Kk+1 = Kk/2 circles,
and each circle contains two circles from the pre-
vious covering. If Kk is odd, then everything is
similar, but the last circle of the new covering con-
tains three last circles of the previous covering and,
thus, the new covering consists of
(Kk − 1)/2 circles.

4. Increase k by one.



5. If Kk > 1, go to step 3, otherwise stop.

The search structure for the right link half is shown in
fig. 6.

Figure 6. Search structure for the link half contour

Once the search structures described above are built
for each of the contacting bodies, a very simple and
time-efficient algorithm can be proposed to find inter-
section points of the polygons’ boundaries. To describe
the algorithm, let’s introduce additional superscript that
denotes the body number and takes the values 1, 2: fur-
ther we write ok,α

i instead of ok
i , V α

i instead of Vi and
so on. Let M1 and M2 be the numbers of coverings in
the search structures for the boundaries of two contact-
ing bodies, Γ1 and Γ2. The algorithm performs the re-
cursive intersection test for the circles oM1,1

1 and oM2,2
1 .

The test verifies whether given circles, om1,1
i and

om2,2
j intersect or not. If the circles don’t intersect,

the test finishes indicating that no intersection occurs
inside the given circles. If the circles do intersect, the
test verifies if m1 and m2 are both equal to 1. If so
(we are testing two circles of the initial coverings), the
corresponding edges of Γ1 and Γ2 are tested for inter-
section. If the edges intersect, the intersection point is
stored; if not, nothing happens; then the test returns.
Otherwise, if either m1 or m2 is greater than one, if
m1 = 1, the test calls itself recursively for om1,1

i and all
circles om2−1,2

k ∈ om2,2
j , and then returns. Otherwise

(m1 > 1), if m2 = 1, the test calls itself recursively for
all circles om1−1,1

k ∈ om1,1
i and om2,2

j , and then returns.
Otherwise, if both m1 and m2 are greater than one, the
test compares Rm1,1

i and Rm2,2
j , the radii of the circles

om1,1
i and om2,2

j . If Rm1,1
i / Rm2,2

j > 1.5, then the test
calls itself recursively for all circles om1−1,1

k ∈ om1,1
i

and om2,2
j , and then returns. Otherwise, if Rm1,1

i /
Rm2,2

j < 1/1.5, then the test calls itself recursively
for om1,1

i and all circles om2−1,2
k ∈ om2,2

j , and then
returns. Otherwise the test calls itself recursively for
all pairs (om1−1,1

k , om2−1,2
p ), where om1−1,1

k ∈ om1,1
i ,

om2−1,2
p ∈ om2,2

j , and then returns.
The presented algorithm is very efficient compared to

the straight-forward one: over the whole chain at cer-
tain time instant, the average number of tests required
to find intersections of the link half with the sprocket
we have found is 73.6, among which 62.4 are simple

tests (intersection of two circles) and 11.2 are complex
tests (intersection of two edges). Maximum number
of simple tests is 266; maximum number of complex
tests is 60. The efficiency compared to the straight-
forward algorithm is significantly better, because the
latter would always do about 106 complex tests. How-
ever, our algorithm admits further optimization.

4 Numerical experiments
To verify the models of contact interactions the differ-

ential equations of motion for tooth chain transmission
were obtained in Lagrange form and numerical integra-
tion of these equations was carried out. Below we give
the results of numerical experiments in one of station-
ary regimes.
The parameters of the regime are as follows: input

torque, M1 = 3 KN; angular speed of driving sprocket,
ω1 = 600 rpm; angular speed of driven sprocket, ω2 =
750 rpm; gear ratio i = 39/49 ≈ 0.796.
Plots of the values of normal forces that develop be-

tween the pin halves are presented in Fig. 7.

Figure 7. Normal contact force between the pin halves, for one
chain cycle

Plots of the values of normal forces that develop be-
tween the teeth of the chain and the sprockets are pre-
sented in Fig. 8, 9.

Figure 8. Normal contact forces between the left tooth of chain link
and the sprockets, for one chain cycle



Figure 9. Normal contact forces between the right tooth of chain
link and the sprockets, for one chain cycle

Fig. 8, 9 show that contact forces appear primarily
between the left side of left link tooth and the driven
sprocket, and between the right side of right link tooth
and the driving sprocket.
The results of numerical experiments confirm the va-

lidity of the proposed models of contact interactions.
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