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Abstract

In this paper, we present an image denoising algo-
rithm comprising three stages. In the first stage, Prin-
cipal Component Analysis (PCA) is used to suppress the
noise. PCA is applied to image blocks to characterize
localized features and rare image patches. In the second
stage, we use the Gaussian curvature to develop an adap-
tive total-variation-based (TV) denoising model to effec-
tively remove visual artifacts and noise residual gener-
ated by the first stage. Finally, the denoised image is
sharpened in order to enhance the contrast of the denois-
ing result. Experimental results on natural images and
computed tomography (CT) images demonstrated that
the proposed algorithm yields denoising results better
than competing algorithms in terms of both qualitative
and quantitative aspects.
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1 Introduction

Imaging devices always produce some noise during the
image acquisition process, and denoising is an essential
step in most of image processing pipelines. Let u : ) C
R? — R be a clean image, and let f be a noisy image
(i.e., the degraded version of u). The commonly used
model of image degradation assumes that the observed
image f is perturbed by a Gaussian noise of the form

f=u+n(0,0%), (1)

where 7(0, 02) denotes an additive white Gaussian noise
with zero mean and a variance o2

Reconstruction of the clean image w is an inverse prob-
lem, which is generally ill-posed. Adding a regulariza-

tion term, which provides a priori information, enforces
a unique approximation of the solution. Rudin-Osher-

Fatemi (ROF) model is one of the most famous works
in this direction that uses the TV functional as a regu-
larization energy [Rudin et al., 1992]. The main draw-
back of the ROF model is to produce the staircase ef-
fect, which appears at the extrema and at the boundary
of an image. To improve the denoising performance of
the ROF model, various types of weighted functions are
incorporated to the TV regularization in order to control
the amount of smoothing [Zhou and Li, 2013; Liu et al.,
2016; Wang and Qi, 2018; Bazhanov et al., 2018; Lai
et al., 2019; Thang et al., 2019; Pham et al., 2020].

Among filter-based algorithms, non-local means filter-
ing (NLMF) was proven to be asymptotically optimal
under a generic statistical image model [Buades et al.,
2005b]. NLMF takes advantage of the redundancy of
natural images. By this, some image blocks at different
positions in a natural image have self-similar features,
which means they have a certain correlation. NLMF es-
timates the denoised image by computing the average of
all pixels in the image, weighted by the similarity be-
tween these pixels and the target pixel. The similarity is
measured as a decreasing function of the weighted Eu-
clidean distance [Buades et al., 2005a].

The image denoising problem can also be solved by
exploiting the observation that natural images can be
approximated by images with sparsity [Deledalle et al.,
2011; Zhang et al., 2012; Ji et al., 2010; Gu et al., 2014;
Gu et al., 2017]. In the work of Zhang et al. [Zhang
et al., 2010], the authors presented an image denoising
scheme comprising two stages. In the first stage, the
noise is reduced in the PCA domain. In the second stage,
the denoising procedure is iterated one more time to fur-
ther enhance the denoising performance of the first stage.
Experimental results showed that the proposed scheme
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achieves very competitive denoising performance com-
pared with state-of-the-art algorithms. However, this ap-
proach also produces visual artifacts due to thresholding
in the transformed domain.

Recently, deep learning networks have achieved great
success on tasks of image restoration such as [Zhang
et al., 2017; Lefkimmiatis, 2018; Zhang et al., 2018].
These denoising models yield significant gain of denois-
ing capability, especially for noisy images which have
low SNR. Yet, it requires a large amount of resources
to train and deploy models. This is a crucial limitation
of these learning models, especially when they are inte-
grated in the pre-processing block of a computer vision
system.

In this paper, we investigate a denoising algorithm for
images corrupted by Gaussian noise. Our contribution
is threefold. First, we propose a multi-stage denois-
ing algorithm which comprises a PCA-based denoiser,
an adaptive TV-based denoiser and a sharpening proce-
dure. The proposed algorithm can achieve the denoising
performance better than that of widely used algorithms.
Second, we propose an adaptive TV-based model using
Gaussian curvature for the second stage that allows the
model to adjust the edge-preservation and the noise re-
duction abilities automatically. Third, we modify the
thresholding technique of the PCA-based denoiser to re-
duce resulting artifacts.

The rest of the paper is organized as follows. The pro-
posed algorithm is presented in Sections 2. Section 3
discusses experimental results.

2 Proposed algorithm

The proposed algorithm comprises three stages as
shown in Fig.1. The first stage yields the initial estima-
tion of the denoised image by using a modified patch-
based PCA method with the Stein thresholding. The
choice of PCA-based denoising is based on the fact that
it can produce denoising results competive with the state-
of-the-art denoising algorithms [Deledalle et al., 2011;
Zhang et al., 2010]. Most of the noise is suppressed
in this stage. Yet, visual artifacts are produced due to
thresholding in the PCA domain and the influence of the
noise. In the second stage, the output of the first stage
will be further refined by using an adaptive TV-based de-
noiser to reduce visual artifacts while preserving edges.
Since the TV-based denoiser reduces the contrast of the
denoised image, a sharpening procedure is applied in the
third stage to enhance the contrast of the image. Details
of the proposed algorithm are described as follows.

2.1 First stage: Patch-based PCA denoising

The first stage of the proposed algorithm relies on the
observation that natural images can be approximated by
a sparse representation. PCA is applied to decompose an
image into uncorrelated variables called principal com-
ponents. In the PCA domain, the energy of the noiseless
image concentrates on a subspace spanned by a small
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subset of components, while the energy of the noise
distributes uniformly over the whole space. Thus, the
shrinkage approaches can be applied to achieve a sparse
representation in the transformed domain.

In order to perform the PCA transformation, we need
a set of training samples of the noisy image f. For this
purpose, we use a sliding window with the size of L x L
to extract image patches, which are training examples
for PCA. To reduce the computational complexity, the
sliding window is applied with a stride S. Image patches
inside a small image region are grouped into a block to
characterize the image locally. Then, PCA is performed
for each block. In this way, we can find resulting bases
adapted to the local image regions as well as the whole
image. A thresholding technique can be applied in the
PCA domain to remove the noise. Details of the first
stage are described as follows.

We denote by F the sample matrix for a block, which
has the following form:

Juu fiz o fin

Jo1 foa -++ fon
B )

fml me fmn
where each row comprises n = L x L pixel values
of a patch. Each block has m patches. Let F; =

[ fi1 fio ... fm] be the i-th row of the sample matrix
F, which corresponds to a patch of the block.

The mean value of each column (j = 1, ..., n) is com-
puted, then placed into the mean vector M as
] T

M= [p1piz - pn] 3)

where

1 m
wi=—>_fi @
=1

The sample matrix F is centralized by subtracting the
mean vector M from each row of F:

F=F-HMT, 3)

T,
where H = [1 1--- 1] is an m x 1 column vector.
The covariance of the centralized sample matrix F is
computed as

Y= —FF . (©6)

According to the PCA method, the singular value de-
composition of the covariance matrix X is computed. Let
A1 > A > ... > A, > 0 be the eigenvalues of ¥ and
X1,Xs,...,X,, € R" be the corresponding eigenvec-
tors. Eigenvectors are also called principal components
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and form an orthogonal basis. A patch F; of the block
can be decomposed as

n
Fi=M"+> (F;—M", X[ x][. (7)
k=1

It is clear that for a given patch, only a small subset
of components are relevant, but they may vary between
different patches. Thus, we denoise patches according to
the magnitude of the projection onto the PCA space in-
stead of the variances of principal components. For this
purpose, we use the Stein thresholding Sy (-) to reduce
resulting artifacts as:

2
A 0) t, ®)

S)\(t) — max (1 — W,
where ) is a threshold parameter.

The thresholding operator is applied for patches of
each block as

Fi=M"+> S\ ((Fi—M", X)) x{.
k=1

The overlap of patches creates redundancy of patch es-
timation. Therefore, for all pixels, the final estimate is
the uniform average of candidate estimates.

2.2 Second stage: Adaptive TV-based denoising
Most of the noise is suppressed in the first stage, yet
the output image contains visually unpleasant artifacts
and noise residual. The main reason is due to the fact
that the covariance matrix X is corrupted by noise, caus-
ing the estimation bias of the PCA transformation. In
addition, only few components represent an image block
so that it is unable to explain rare patches. Therefore, we
propose to use a second stage to further refine the denois-

ing performance. Among denoising methods, the ROF
model is effective at simultaneously maintaining edges

Flowchart of the proposed algorithm.

whilst removing noise in flat regions due to the TV-based
regularizer. The ROF model is formulated as

muin % /(u — f)?dz + a/ |Vuldz, (10)
Q Q

where V stands for the gradient operator; « is a positive
regularization parameter; | - | denotes the L!-norm. The
first term in (10) measures the fidelity to the noisy image
f. The second one, called the TV of the image w, is the
regularization term. The TV term allows the existence
of edges and is also a smoothing term.

The ROF model is not adaptive since the regularization
parameter is the same for all pixels. To improve the de-
noising performance of the ROF model, we modify it by
introducing a weighted function into the TV-based reg-
ularizer in order to adjust the strength of smoothing for
each pixel of the image.

To this end, we propose an adaptive TV-based denois-
ing model as

u

minl/(u—f)zclac—i—/a(aj)|Vu|cl9U7 (11)
2 Ja Q

where «f(+) is a weighted function, which is expressed by

&)

alz) = , (12)

= - (ch*f)z

where a - an initial regularization parameter; -y - a con-
trast parameter; I'g, . is the Gaussian curvature of the
smoothed image of f, which is defined as

VgaVyy — VzyUyx
=2 I 13
v ('U:% +’U,§ + 1)2 b) ( )

where v, vy and vy, Vyy, Vay, Uy, denote the first-order
and the second-order derivatives of v with respect to x, y;
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|z

Gy(z) = 9\/1% exp (—?) denoting the Gaussian fil-

ter with a standard deviation 6. The Gaussian filter is
used to reduce the noise, which affects the computa-
tion of the Gaussian curvature in (13). As can be seen
from (11), (12), and (13), the proposed model has the
strength of smoothing larger for homogeneous regions
compared with that for edges. This property allows the
model preserve edges, producing better denoising results
compared to the original ROF model.

We use the split Bregman method [Goldstein and Os-
her, 2009] to solve the problem (11). According to the
split Bregman method, we minimize the following dis-
crete unconstrained problem of (11):

A
min & llu = fI3 + () ] + 5 ld — Tu b3, (14)

where d is an auxiliary variable; b is a variable chosen
through each iteration; y is a positive penalty parameter.

The problem (14) is solved by iteratively minimizing
with respect to u and d separately. We obtain the v and
the d subproblems as

LA
W= min S 18+ Bt - V=113 (9

dht = mdina(x)HdHl + g”d — VUt k2. (16)

The w subproblem can be solved via the optimality
condition using the Fourier transform as

e ]-'()\f—,udiv(dk—bk))
)\I—Qu(COSQLMT—i-COSQ% —2) ’
a7

where r € [0, M —1] and s € [0, N — 1] are the frequen-
cies in the discrete frequency domain; F and 7~ stand
for the forward and the inverse Fourier transforms; ”—"
stands for the point-wise division of matrices.

We solve the d subproblem by using the shrinkage op-
erator [Setzer, 2011] as

Vuktl 4 bk a(x)
dk+1 — k+1 bk _ O )
T b max | [Vu"T" 4 b"| i
(18)
The variable b is updated after each iteration
P = bF 4 Vit — g (19)

By iteratively computing the sequence of equations
(17), (18) and (19), we can find the solution of the prob-
lem (14). Note that instead of computing the weighted
function «(-) only once using the observed noisy im-
age f, we iteratively refine it using the denoised image
at each iteration. This step ensures that the weighted
function is updated with the denoised image, resulting
in more pleasant denoising results.

165

2.3 Third stage: Sharpening

Although the second stage can reduce noise while pre-
serving edges, the TV term causes the loss of contrast
in the denoised image [Strong and Chan, 2003; Li et al.,
2014]. Since the noise and the artifacts are suppressed
significantly after the first two stages, we can utilize the
unsharp masking technique to enhance the denoising re-
sult in terms of contrast. Without the second stage, the
sharpening procedure could not enhance the denoising
results due to the noise and artifacts.

Let u(z, y) be the original image. Unsharp masking is
created by subtracting the blurred image from the origi-
nal image as

gmask(x7y) = u(x7y) - Gp*“(%l/)a (20)
where G, is a Gaussian filter with the parameter p.

Then a weighted portion of the mask is added to the

original image to obtain a sharper image

g(x,y) :u(xvy)"’_ﬁ'gmask(mvy)a 21

where (3 is a scaling constant.

3 Experimental results

In this section, we compare the proposed algorithm
(PCATVS) with related algorithms, including ROF
[Rudin et al., 1992], PLPCA [Zhang et al., 2010], and
NLMF [Buades et al., 2005a]. The original source codes
of competing algorithms are obtained, and we use the
default parameters. For PCATVS, the parameter values
are fixedas: L=7,5=3,A=25,a90=1,7=0.9,
0=05u=5p=158=038.

We perform experiments on 14 widely used images
(Fig. 2). Images are perturbed by additive white Gaus-
sian noise with zero mean and a standard deviation o.
We consider three noise levels, including o = 10, 20 and
40. We evaluate the performance of algorithms by using
three criteria: PSNR, SSIM and visual quality.

Figure 2. Testing images. First row: Barbara, Boat, Cameraman,
Couple, Fingerprint, Flinstones, Hill; second row: House, Jetplane,
Lena, Man, Mandril, Monarch, Peppers.

We, first, demonstrate the denoising performance after
each stage of the proposed algorithm. Figure 3 shows the
denoised images by each stage for the image Monarch.
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The quantitative results are also shown for each denois-
ing result. It can be seen that the first stage produces an
image with a large amount of visual artifacts. Although
the second stage nearly does not improve the PSNR mea-
sure, the SSIM value is gained significantly. One can see
from the Fig. 3d that most of visual artifacts are reduced
by the second stage while maintaining edges. Yet, its de-
noised result has lower contrast compared with that of
the first stage. The sharpening stage significantly im-
proves the denoising result in terms of both quantitative
and qualitative criteria.

Table 1 reports the PSNR and SSIM results of differ-
ent methods. From Table 1 we have the following ob-
servations. First, on all noise levels, PCATVS achieves
the best results for almost all images. By PSNR, the
proposed algorithm surpasses PLPCA, ROF, and NLM
by 0.42dB, 1.74db, and 1.3dB, respectively; by SSIM,
PCATVS outperforms them by 0.0131, 0.0439, and
0.0448, respectively. Second, PCATVS outperforms
competing algorithms by a large margin on images such
as Barbara. This is because the image Barbara is dom-
inated by a large amount of repetitive structures, which
can be effectively exploited by PCA-based method. Be-
sides, the second stage of the proposed algorithm en-
hances the denoising performance of the PCA-based
stage by reducing visual artifacts.

Figure 4 shows denoised images of Barbara by dif-
ferent methods. The original image is corrupted by a
Gaussian noise with the standard deviation o = 10. A
portion of images is enlarged for visual evaluation. From
Fig. 4, one can see that PCATVS and NLMF yield de-
noising results, which are more visually pleasing than
that of PLPCA and ROF. Compared with PCATVS, low-
contrast textures are smoothed out by NLMF. PLPCA
produces visual artifacts, whereas ROF generates blocky
image regions and reduces the contrast of the image.

Figures 5 and 6 demonstrate denoised images of Jet-
plane and Monarch for the noise levels o = 20 and 40,
respectively. It can be seen that features, which are char-
acterized by long and small edges such as characters, are
well preserved by PCATVS. NLMF produces noisy pix-
els along edges. As the noise level increases, PLPCA
and NLMF generate more visual artifacts, creating vi-
sually unpleasant results. The denoised images by ROF
suffers the staircase effect.

We further evaluate methods on a computed tomogra-
phy (CT) image. CT is one of the major tools in med-
ical diagnostics. The quality of CT images depends on
the amount of X-ray. As increasing the X-ray dose, the
quality of CT images becomes better. However, high-
dose of X-ray makes negative impacts on patients. Due
to the statistical uncertainty in physical measurements,
low-dose CT images are noisy and difficult to observe
[Erofeeva et al., 2018]. Thus, denoising low-dose CT
images improves the quality of images without increas-
ing the X-ray dose. CT images are often corrupted by

speckle noise [Duan et al., 2016; Duan et al., 2015]. Fig.
7 shows denoising results by different methods on the
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CT image corrupted by speckle noise. It can be seen
that artifacts ganerated by PLPCA and ROF are signifi-
cant, whereas NLMF produce over-smooth image. The
proposed algorithm can remove noise while preserving
edges and fine details well.

4 Conclusion

In this paper, we have presented a denoising algorithm
for images corrupted by Gaussian noise. The proposed
algorithm consists of three stages. First, the noise is
suppressed in the PCA domain using the Stein thresh-
olding. The output of the first stage is further refined
by a TV-based denoising model, which is adaptive with
the reconstructed image. Finally, the denoised image is
sharpened using the unsharp masking technique. Experi-
mental results demonstrated that the proposed algorithm
outperforms competing algorithm in terms of both qual-
itative and quantitative aspects, especially for images
which have a large amount of repetitive structures. Ex-
perimental results on CT images showed the flexibility
of the proposed algorithm.
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Table 1. PSNR and SSIM results of different methods
Methods PLPCA ROF NLMF PCATVS
o=10
Barbara 33.59(0.9225) | 30.71(0.8522) | 33.24(0.9178) | 34.70(0.9354)
Boat 33.48(0.8817) | 32.24(0.8617) | 32.28(0.8519) | 33.75(0.8864)
Cameraman | 33.33(0.9138) | 31.49(0.8937) | 32.57(0.8977) | 33.61(0.9187)
Couple 33.45(0.8959) | 32.07(0.8737) | 32.33(0.8686) | 33.67(0.9009)
Fingerprint | 32.24(0.9659) | 31.07(0.9550) | 30.21(0.9488) | 32.44(0.9674)
Flinstones 32.02(0.9052) | 31.12(0.8989) | 31.65(0.8939) | 32.16(0.9061)
Hill 31.49(0.8773) | 30.72(0.8532) | 30.49(0.8239) | 31.74(0.8800)
House 35.08(0.8971) | 30.72(0.8532) | 34.87(0.8907) | 35.85(0.9066)
Jetplane 35.46(0.9223) | 34.45(0.9177) | 34.12(0.9170) | 35.80(0.9289)
Lena 35.20(0.9028) | 34.17(0.8900) | 34.41(0.8965) | 35.64(0.9109)
Man 33.42(0.8953) | 32.64(0.8812) | 32.48(0.8728) | 33.71(0.9025)
Mandril 33.33(0.9308) | 31.09(0.8990) | 30.74(0.8912) | 33.40(0.9328)
Monarch 35.12(0.9385) | 34.20(0.9278) | 34.59(0.9461) | 35.45(0.9457)
Peppers 33.90(0.9179) | 32.95(0.9111) | 33.31(0.9138) | 34.21(0.9237)
AVERAGE | 33.65(0.9119) | 32.12(0.8906) | 32.66(0.8950) | 34.01(0.9176)
o =20
Barbara 29.70(0.8539) | 26.82(0.7526) | 29.47(0.8468) | 31.03(0.8837)
Boat 30.01(0.7961) | 29.07(0.7758) | 29.00(0.7654) | 30.34(0.8073)
Cameraman | 29.25(0.8371) | 28.11(0.8233) | 29.14(0.8259) | 30.30(0.8665)
Couple | 29.88(0.8116) | 28.65(0.7765) | 28.49(0.7658) | 30.01(0.8180)
Fingerprint | 28.25(0.9154) | 26.68(0.8852) | 27.16(0.8869) | 28.41(0.9181)
Flinstones 28.33(0.8478) | 26.99(0.8339) | 28.07(0.8499) | 28.56(0.8512)
Hill 28.06(0.7583) | 27.60(0.7366) | 27.10(0.7084) | 28.22(0.7608)
House 32.05(0.8437) | 27.60(0.7366) | 31.86(0.8398) | 32.65(0.8558)
Jetplane 31.96(0.8759) | 31.15(0.8701) | 30.96(0.8589) | 32.25(0.8891)
Lena 32.12(0.8506) | 31.16(0.8332) | 31.23(0.8338) | 32.53(0.8636)
Man 29.93(0.8074) | 29.50(0.7951) | 29.09(0.7773) | 30.17(0.8184)
Mandril 28.78(0.8306) | 27.05(0.7747) | 27.00(0.7637) | 28.84(0.8344)
Monarch 31.26(0.9007) | 30.81(0.8899) | 30.87(0.8966) | 31.64(0.9177)
Peppers 30.13(0.8636) | 29.43(0.8533) | 29.73(0.8505) | 30.55(0.8749)
AVERAGE | 29.98(0.8423) | 28.62(0.8098) | 29.23(0.8192) | 30.39(0.8543)
o =40
Barbara | 26.34(0.7572) | 23.66(0.6483) | 25.32(0.7060) | 29.33(0.8121)
Boat 26.63(0.6914) | 26.00(0.6726) | 25.48(0.6358) | 26.77(0.7039)
Cameraman | 25.11(0.7283) | 24.57(0.7307) | 25.13(0.6959) | 25.23(0.7537)
Couple 26.34(0.6862) | 25.56(0.6529) | 24.78(0.6035) | 26.33(0.6934)
Fingerprint | 24.72(0.8270) | 22.53(0.7393) | 23.01(0.7514) | 24.77(0.8253)
Flinstones 23.63(0.7371) | 22.55(0.7209) | 23.70(0.7321) | 23.94(0.7540)
Hill 25.37(0.6289) | 25.03(0.6014) | 24.27(0.5659) | 25.43(0.6283)
House 28.85(0.7822) | 25.03(0.6014) | 27.41(0.7267) | 29.43(0.8159)
Jetplane 28.27(0.8226) | 27.72(0.8194) | 27.50(0.7603) | 28.48(0.8413)
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