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Abstract functions ford = 1 andV = 0 (Beauchard, 2005;

In arecent paper we proposed a set of sufficient condi- Beauchard and Coron, 2006) and the recently obtained
tions for the approximate controllability of a discrete- L2-approximate controllability (Nersesyan, 2008). The
spectrum bilinear Schrodinger equation on a fixed do- result we will consider for the discussion below is the
main. These conditions are expressed in terms of the L2-approximate controllability obtained by the authors
controlled potential and of the eigenpairs of the uncon- in (Chambrioret al,, 2008).
trolled Schrodinger operator. The aim of this presen- The scope of this paper is to establish that the
tation is to show that these conditions are generic with sufficient conditions for controllability proposed in
respect to the uncontrolled or the controlled potential. (Chambrionet al, 2008) are robust and frequent
The results are obtained by analytic perturbation argu- enough. The mathematical framework for this analy-
ments and through the study of asymptotic properties sis is provided by the standard notion of genericity.
of eigenfunctions. Let us mention that the genericity question for
the Schrodinger equation is already addressed in
(Nersesyan, 2008), where some partial results are
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. . . . given. In particular, genericity for the case =
e(;uegtei:r? conditions, - Controllability, - Schrodinger i essentially proven in (Nersesyan, 2008, Lemma

3.12). Further genericity results on the controllability
of a linearized Schrodinger equation can be found in
1 Introduction (Beaucharcet al, 2008) and are further discussed in

In this paper we consider controlled Schrodinger Section 6.
equations of the type
2 Notations and definition of solutions
Z.a_lll(t z) = (A + V() +u®)W(x))p(t, z), (1) We denote byN the set of positive integers, by* the
t ) ) )

0 adjoint of an operatoA. We fix d € N to denote the
dimension of the space in which the Schrodinger equa-
whereu(t) € U, : I x Q — C for someQ2 ¢ R? tion is considered. We denote Bythe set of nonempty,
open bounded] is a subinterval oR, 1|;x0q = 0. open and bounded subsetsRA.
HereV, W are suitable real valued functions abidis In the following we consider Equation (1) assuming
a nonempty subset &. that the potential¥, W are taken inL>°(Q2, R). Then,

As proved in (Turinici, 2000), the control system for everyu € U, —A +V +uW : H?*(Q,R) N
(1) is never exactly controllable in?(Q2). Neverthe-  H}(Q,R) — L?*(2,C) is a skew-adjoint operator on
less, several positive controllability results have been L?(Q2, C) with discrete spectrum. (See (Friedrichs,
proved in recent years. Among them, let us mention 1934).) In particular-A + V +uW generates a group
the exact controllability among regular enough wave of unitary transformationg(—2+V+uW) . 12(Q) —



L%(Q). Therefore e (-A+V+ul)(S) = S whereS
denotes the unit sphere 6F (12).
For everyu € L>=([0,T],U) and everyy, €

sense of its density matrices if for every pair p; of
unitarily equivalent density matrices and every> 0
there existl’ > 0 andu € L°([0,7],U) such that

L*(Q2) there exists a unique weak (and mild) solution |p; — U(T)poU(T)*|| < e, where| - || denotes the

P(+510,u) € C([0,T], H). Moreover, ifipg € D(A)
andu € C([0,T),U) theny(-; 10, u) is differentiable
and it is a strong solution of (1). (See (Batlal, 1982)
and references therein.)

Definition 2.1. We say that the quadruple
(Q,V,W,U) is approximately controllable if for every
Yo,¥1 € S and everys > 0 there existl” > 0 and
u € L*([0,T],U) such thatl|yy — (T'; 1o, u)|| < e.

operator norm or#{ andU is defined as in (3).

It is clear that approximate controllability in the sense
of its density matrices implies approximate controlla-
bility (just take P, = 1).

In order to state the approximate controllability result
obtained in (Chambrioat al, 2008), we need to recall
the following two definitions.

Definition 2.4. The elements of a sequence

It is useful for the applications to extend the notion of (un)r_leN C R are said to be_Q-Iin_earIy independent
approximate controllability from a single Schrodinger (equivalently, the sequence is said to be non-resonant)

equation to a (possibly infinite) family of identical sys-
tems with differentinitial conditions, through the study

of the evolution of the associated density matrix (see

(Albertini and D’Alessandro, 2003)).
Let (¢j)jen be an orthonormal basis of?(2),

(Pj)jen be a sequence of non-negative numbers such

thatz;';1 P; =1, and denote by thedensity matrix
p=>_ Pipje;",
j=1

wherey*(-) = (i,-), for v» € L*(Q). In accord
with the classical definition of density matriy, is a

if for everyN € N and (¢, . ..
hasS | quptn # 0.

Definition 2.5. An x n matrix C' = (¢;x)1<j,k<n IS
said to be connected if for every pair of indicgg €
{1,...,n} there exists a finite sequeneg,...,r €
{1,...,n} such that;,, ¢ r, - Cr, _yr Crie 0.

,qn) € QY ~ {0} one

In the following we denote byos(V,Q) =
(A (V,Q))jen the non-decreasing sequence of
eigenvalues of-A + V (on H2(Q,R) N H}(Q,R)),
counted according to their multiplicity and by
(9;(V,Q));en the corresponding sequence of eigen-
functions (unique up to the sign if the corresponding
eigenvalue is simple). In particuld;(V,Q));en

non-negative, self-adjoint operator of trace class (seef0rms an orthonormal basis & (Q2, C).

(Reed and Simon, 1978, Vol. I)). If each, = ¢;(t)

The theorem below recalls the controllability results

is interpreted as the state of a Schrodinger equation ofobtained by the authors in (Chambrien al, 2008,
the form (1), each equation being characterized by the Theorems 3.4, 5.2).

same potential® and¥ and driven by the same con-
trol v = wu(t), then the time evolution of the density
matrix p = p(t) is described by

p(t) = U(t)p(0)U"(t)

= _FUMe;0UMe;0) @

where the operatdd(¢) is defined by

U(t)vo = ¥(t; o, u). ®)

Definition 2.2. Two density matricep, and p; are
said to be unitarily equivalent if there exists a unitary
transformationU of H such thatp; = Up,U*.

Theorem 2.6. LetQ) € E, V, W belong toL>°(£2, R),
andU contain the interval0, §) for somed > 0. As-
sume that the elements(©f.1 (V, )=\ (V, Q)
are Q-linearly independent and that for infinitely many
n € N the matrix

n

BM™(Q, v, W) ::(/g?/(x)qjj(v, D)o (V, Q) dx)

dik=1

is connected (i.e.B™ (Q,V,W) is frequently con-
nected). TherfQ,V, W, U) is approximately control-
lable in the sense of its density matrices.

Remark 2.7. In (Chambrionet al, 2008) the casé)
unbounded is also considered. The potentidlsand
W are allowed to be unbounded as well, and Theo-
rem 2.6 still holds, though the notion of solution of (1)

For closed systems the problem of connecting two den-gets more delicate. In this presentation we restrict our
sity matrices by a feasible trajectory makes sense onlyattention to the bounded case, although many of the
for pairs of density matrices that are unitarily equiva- results presented below admit suitable counterparts in
lent. (The situation is different for open systems, see the unbounded setting.

for instance (Altafini, 2003). L .
( ) We say that(2, V, W) is fit for control if —A + V

is non-resonant an@ ™) (Q, V, W) is frequently con-
nected.

Definition 2.3. We say that the quadruple
(Q,V,W,U) is approximately controllable in the



We say that the quadrupl€), V, W, U) is effectiveif Proposition 4.1 (Albert). LetQ2 € . For everyk €
(Q,V 4+ uW, W) is fit for control for someu in the N the set
interior of U, denoted byint (U). Theorem 2.6 states
that being effective is a sufficient condition for control-
lability in the sense of the density matrices.

Let us recall some useful perturbation result describ-
ing the dependence dn of the spectrum of the opera-
tor—A+ V.

The first result recalls some well-know continuity ~We generalize Proposition 4.1 as follows.
properties. (See, for instance, (Henrot, 2006).)

Ri={V € L=(Q) | M (V,Q),..., \(V, Q) simple

4)
is open and dense ih.>°(2). Hence, the spectrum
o(V,Q) is, generically with respedt’, simple.

Proposition 4.2. Let2 € =. For everyK € N and

Theorem 2.8. Assume thaf? € =, V € L(Q) and 7= (01:---:ax) € Q' \ {0}, the set

that the eigenvalug (V') of the Schddinger operator

—A+Vissimple. Then,(V +W, Q) depends contin- K

uously onV € L*°(€2) on a neighborhood oft” = 0 O, =V eL>Q)| qu,\j(v, Q) #0 (5)
and, analogously, the map fror () to L?(Q2) that i=1

associates té1 the corresponding-th eigenvector of

—A+V + W (up to the sign) is continuous on a neigh- )
borhood of iV = 0. is open and dense iR.>°(2). Hence, the spectrum

o(V,Q) forms, generically with respect’, a non-

The second result concerns analytic perturbation prop-resonant family.

erties. (See (Kato, 1966, Chapter V), (Rellich, 1969, pgnqsition 4.1 is clearly a special case of Propo-

Chapter 1).) siton 4.2, sinceRy = N5_,0. ., ., where
i iR+
Theorem 2.9. Let U be an open interval containing 1"~ k+1 denotes the canonical basisRf +. .
zero. Assume tha € =, V € L=(Q) andy — W, is The proof of Proposition 4.2 is based on the following
' - ’ lemma.

an analytic function front into L>°(Q2). Then, there

exist two families of analytic functions\, : U — Lemma4.3. LetQ) € = andw be a nonempty, open

Clien and (¥, : U — L*(Q))ren such that for  subset compactly contained $hand whose boundary

any p in U the sequencéAy(u))ren is the family s Lipschitz. Let belong toL>°(w) and (Vi )ren be a

of eigenvalues of-A + V' + W, counted according  sequence inL>(Q) such thatVy|, — v in L®(w)

to their multiplicities, (P« (1)) ren IS an orthonormal ask — oo andlimy o info\, V& = +o0. Then,

basis of corresponding eigenfunctions and, moreover, for everyj € N, limj_, o Ni(Vi, Q) = \j(v,w).

Ak(0) = Ae(V,Q) and ©4,(0) = ¢ (V, ) for every  Moreover, if);(v,w) is simple then (up to a choice of

ke N. sign)limg— 400 ¢ (Vie, Q) = ¢;(v,w) in L?(Q), where
¢;(v,w) is identified with its extension by zero outside

o _ o w. When both\; (v, w) and\,, (v, w) are simple, then
3 Genericity: topologies and definitions

Let us recall that every complete metric spaces a

Baire space, that is, any intersection of countably many lim Vi (Vie, Q)b (Vie, Q) =

open and dense subsetsXfis dense inX. The inter- k—+oo Jo '

section of countably many open and dense subsets of a / ‘

Baire space is called @sidualsubset ofX. Given a w V03 (0, @) Pm (0, w)- ©)

Baire spaceX and a boolean functioR : X — {0,1}
we say thatP is a generic propertyif there exists a
residual subset” of X such that every in Y satisfies
propertyP, thatis,P(z) = 1.

In the following the role of X will be played by
L%(9) x L=(9) or L (4). {V € L™() | o(V,2) non-resonanjt=

Ngeuren(@\{o}) Oq-

Proof of Proposition 4.2 The second part of the state-
ment clearly follows from the first one, since

4 The triple (Q, V, W) is generically fit for control
with respect to the pair (V, W) Fix K € Nandg = (q1,...,9x) € Q" \ {0}. Let
Here below we prove that, gived € =, for a generic O be defined as in (5). The opennesghfin L=°(€)
pair (V, W) € L>®(Q) x L>(Q) the triple(Q, V, W) follows directly from the continuity of the eigenvalues
is fit for control. onV. (See Theorem 2.8.)
Let us start by recalling a known result on the generic The density of0, is obtained by an analytic pertur-

simplicity of eigenvalues (see (Albert, 1975; Uhlen- bation argument. FiX” € L*(Q). Letw be ad-
beck, 1976)). orthotope compactly contained §hand IV a measur-

able bounded function om such that A\, (W, w))ken



is a Q-linearly independent family. (The existence of
suchw and ¥ is obtained in (Chambrioat al., 2008,
Section 6.3) ford = 3 and the proof extends with no
extra difficulty to the general cagec N.)

For everyt € R letV; be defined a¥ + t onQ \ w
and as

1 t
1+ tV + 1+ tW
onw. Notice thatl, = V and that — V, is an analytic
function from|[0, co) to L>°(2). It follows from The-
orem 2.9 that there exists a familx(-))xen Of ana-
lytic functions such that(V;, Q) = {Ax(t) | k € N}
for everyt € [0,00) andA(0) = \x(V, Q).

Notice that, ag — +oo, V; converges uniformly to
+oo0on 2\ wand toW onw. Therefore, according to
Lemma 4.3, for every € N the functionA(¢) tends
to some\;, ) (W, w) ast — +oo, whereh : N — N
is a bijection.

Since (A, (W, w))ren is a Q-linearly independent
family, we have that for every injective map
{1,...,K} = N,

K
> Gy (Wow) # 0.

Jj=1

Therefore, for everyp, ¢t — Zﬁil qi Ay (t) is an
analytic function with nonzero limit as — +oo. As
a consequenceri1 qiN\;(V, 1) # 0 for all but a
countable subset af In particular, there exists > 0
arbitrarily small such thaZjil q;Aj(Vi, Q) #0. The
proof is concluded, sincg, — V in L>°(Q) ast — 0.
[

The following theorem extends the analysis frbnto
the pair(V, W), combining the generic non-resonance
of the spectrum of-A + V with a genericity connect-
edness condition on the matricBS™ (Q, V, W).

Theorem4.4.Let Q@ € =. Then, generically
with respect to(V, W) € L>(Q) x L>(Q) the
triple (92, V, W) is fit for control and, in particular,
(Q,V,W,U) is approximately controllable in the sense
of its density matrices for evely C R with nonempty
interior.

Proof. Recall thatR;, definedin (4), is open and dense
in L= (£2). If V belongs taR, then the eigenfunctions
$1(V,Q), ..., ¢x(V,Q) are uniquely defined i/} ()

up to sign. It makes sense, therefore, to define

U, = {(V, W) € Ry X LOO(Q) |

[0 (V. 206,.(V,2) # Ofor every1 < iz < k).
Q

As it follows from the unique continuation the-
orem, for everyl < ji,jo < k the product

¢, (V,Q)¢,, (V, Q) is a nonzero function ofe. There-
fore, U, is dense INL>°(Q) x L>(Q). Its open-
ness follows, moreover, from the continuity &f —
{¢;(V,Q),—,;(V, )} on Ry, for j = 1,...,k (see
Theorem 2.8).

The proof is concluded by noticing th&®, V, W) is
fit for control if (V, W) belongs to

(NkenUi) N (Ngeuenai 03 Oq X L2(Q))

which is a countable intersection of open and dense
subsets of.>°(Q2) x L*>(Q).

5 Generic controllability with respect to one single
argument
The following technical result will be useful in the dis-
cussion below.

Lemmab5.1. Let Q2 € = andV a non-constant abso-
lutely continuous function of2. Then there exist € =
compactly contained ift with Lipschitz boundary such
that o(0,w) is simple and a reordering : N — N
such that

/ Vona (0, w)ona+1)(0,w) # 0

for everyl € N.

5.1 Generic controllability with respect to W

We shall prove in this section that for a fixed po-
tential V, generically with respect td17 € L>°(Q),
(Q,V,W,U) is effective. Notice that(2,V, W) can-
not be fit for control if the spectrum df is resonant,
independently ol/. In this regard the result is neces-
sarily weaker than Proposition 4.2, where the generic-
ity of the fitness for control was proved. The precise
statement of our result is given by the following propo-
sition.

Proposition 5.2. LetQ2 € =, V' an absolutely continu-
ous function o2 andU C R with nonempty interior.
Then, generically with respect ©/, (Q,V,W,U) is
effective.

Proof. Given a reorderingh of N, we will denote
by R} the set of potentialy’ € L>°(2) such that
Any (V5 Q) and A, 41y (V, Q) are simple.

We prove the proposition by showing that, for a suit-
able reorderingh, for eachZ (playing the role of
V 4+ uW for some fixedu € U \ {0}) in an open and
dense subset &,

/Q (V = 2 (2. Qdnian (Z,9) 20, (7)

for everyl € N. Define

Al ={Z e Rl | (7) holds trug,



whereh has to be fixed later.

EachA} is open inL>(£2) due to Theorem 2.8. In
order to prove their density fiX, € L>°(£2). We want
to prove thatZ, belongs to the closure of! for every
[ € N for a suitableh.

Consider first the case in whidh is constant. Then

/Q (V = 2)65(Z, Qo (2,9) =
- / Z6,(Z.06m(Z.Q)  (8)

foreveryZ € Ruax(j,m)-
Fix a nonempty, open subsetcompactly contained

in Q, whose boundary is Lipschitz and such that the

spectrumo(0,w) is simple. For instancey can be

taken as an orthotope whose side’s length are non-
(The simplicity of the spectrum of the

resonant.
Laplace-Dirichlet operator o is actually generic

Let nowV be non-constant. Let C 2 andh be asin
the statement of Lemma 5.1.

Similarly to what done above, take an analytic curve
t — Z;in L*°(Q) for ¢ > 0 such thatZ;|, — 0in
L>(w) ast — oo andlim; . infg\,, Z; = +o00. Ac-
cording to Lemma 4.3,

/Q (V' = Z0)ény(Zes Qngany (Ze, ) —

/ Vn)(0,w)dni11)(0,w) # 0,

for everyl € N. Moreover, by analyticity, for almost
everyt > 0 the spectrum of A + 7, is simple and

/Q(V = Z)bnay(Ze, Q) bn41)(Zt, ) # 0

among sufficiently smooth domains, as proved in for everyl € N. This implies thatZ, belongs to the

(Micheletti, 1972; Uhlenbeck, 1976).)

Let = € L*>(w) and assume that is not L?(w)-
orthogonal tog- (0, w),(0,w) for every~y, u € N.
(Suchz exists because each prodyct(0, w)¢,. (0, w)

closure ofA}". ]

5.2 Generic controllability with respect to V'
This section is devoted to the proof of the following

is not identically equal to zero and the intersection of resylt.
countably many open nonempty subspaces of the Baire

spaceL>(w) is nonempty.) Then, each derivative of

5H/5z¢7(az,w)¢#(sz,w)

ate = 0 is equal to

/ 2¢,(0,w)0,(0,w) # 0.

By Theorem 2.9, there existssuch that the spectrum
o(éz,w) is simple and

[ exonenwisiten) £ 0

for every~v, u € N.

Consider now an analytic curve— Z; in L>(2)
for ¢ > 0 such thatZ;|, — &z in L*(w) ast —
oo andlimy . info\, Z; = +oo. (The curveZ; can

Proposition5.3. Let @ € =Z and U C R with
nonempty interior. FiX}/” non-constant and absolutely
continuous on). Then, generically with respect to
Ve L>(Q), (2,V,W,U) is effective.

Proof. Let £ € N. We shall prove that there exists a
reorderingh such that the set df € R} such that

/Q Wonw (V. Qdnasn (V,) 0 (9)

is open and dense ib> (1) for everyl € N. Its open-
ness follows directly from Theorem 2.8.

As for its density, apply Lemma 5.1 with” playing
the role ofVV. Then there exisb € = compactly con-
tained inQ2 and a reordering such that (0, w) is sim-
ple and

/ Wénay (0,w)Pna+1)(0,w) # 0

be constructed as in the proof of Proposition 4.2.) By for everyl € N. Let (V;);>o be an analytic curve in

analyticity we have that for almost evety> 0 the
spectrum of-A + Z; is simple and

/Q Zi(Z0. )b (Z0,2) £0

for every~, u € N. In particular this is true for some
t arbitrarily small, implying thatZ, belongs to the clo-
sure of A} for every reordering and every € N.

L>(€2) converging to0 in w and such thainfg,, V;
converges tao for t — oo.

Then, Theorem 2.9 and Lemma 4.3 imply that, for al-
most everyt, o(V;, §2) is simple and

/QW¢h(z)(W,Q)¢h(l+1)(W7Q) #0

for everyl € N.



6 Conclusion

In this paper we proved that on¢g, V) or (Q, W)
is fixed, the bilinear Schrodinger equation @nhav-
ing V as uncontrolled antV as controlled potential is
generically approximately controllable with respect to
the other element of the triplg2, V, W).

A natural question is whether a similar property holds
with respect to the dependence@nlt makes sense to

conjecture that it does but the proof of this fact seems halbbeschrankter

hard. FixV andWW absolutely continuous oR¢ with

W nowhere locally constant. One important remark is
that the dependence af. (2, V) is not necessarily an-
alytic with respect td?, as it would be the case If
was analytic. (A genericity non-resonance result for
the spectrum in the cadé = 0, for instance, has been

Ruixing Long (2008). Steady state controllability of
2D and 3D linear Schrddinger equatioRseprint

Chambrion, Thomas, Paolo Mason, Mario Sigalotti and

Ugo Boscain (2008). Controllability of the discrete-
spectrum Schrodinger equation driven by an external
field. Annales de I'Institut Henri Poinc#; analyse
non linéaire, doi:10.1016/j.anihpc.2008.05.001

Friedrichs, Kurt (1934). Spektraltheorie

Operatoren und Anwendung
auf die Spektralzerlegung von Differentialoperatoren.
Math. Ann.109(1), 465-487, 685-713.

Henrot, Antoine (2006 )Extremum problems for eigen-
values of elliptic operatord-rontiers in Mathematics.
Birkhauser Verlag. Basel.

Kato, Tosio (1966)Perturbation theory for linear op-

proved along these lines in (Privat and Sigalotti, 2008).) erators Die Grundlehren der mathematischen Wis-

Similarly, the quantities|, W, (22, V)¢;(Q,V) do
not in general vary analytically with respect fo.

senschaften, Band 132. Springer-Verlag New York,
Inc., New York.

Hence, the pattern of the proofs seen in the previous MiCheletti, Anna Maria (1972) Perturbazione dello

sections could not be followed. A partial result go-
ing in the right direction can be found in (Beauchatd
al., 2008), where the authors prove that ¥6r= 0 and
W regular enough, for a gener® domainQ) ¢ R?
one has|, W¢1(Q,0)$;(2,0) # 0 for everyj € N.
The proof of this fact in (Beauchagd al., 2008) is very

spettro dell’operatore di Laplace, in relazione ad una
variazione del campdAnn. Scuola Norm. Sup. Pisa
(3) 26, 151-169.

Nersesyan, V (2008). Growth of Sobolev norms and
controllability of Schrodinger equatioRreprint
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technical and ingenious. Its extension to less regular Squares of the Laplacian-Dirichlet eigenfunctions are
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