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Building dynamical models to study the neural basis of behavior has long history. Recently
a dynamical principle, called winnerless competition (WLC), was suggested [1]-[3]. In such
models, given by multidimensional dynamical systems, spatio-temporal coding is realized in the
form of deterministic trajectories of a moving along heteroclinic orbits that connect certain
saddle fixed points and saddle limit cycles in the state space. The separatrices connecting
these saddle states correspond to sequential switching from one active state – specific neurons
or groups of neurons – to another.
For modelling information of this kind, we propose to use one-dimensional maps with positive
topological entropy. Such maps have a countable set of saddle cycles and an uncountable set
of homoclinic and heteroclinic orbits connecting these cycles.

In [2] P.Seliger, L.Tsimring, and M.Rabinovich write:
“The ability to process sequential information is one of the most important functions of living

and artificial intelligent systems. In spite of the long history of studies of sequential learning and
memory, little is known about dynamical principles of learning and remembering of multiple events
and their temporal order by neural systems.

We propose a dynamical principle of winnerless competition WLC, that can be the basic mecha-
nism of the sequential memory.

The essence of the idea is that the sequential memory is encoded in a multidimensional dyna-
mical system with a complex heteroclinic trajectory connecting a sequence of saddle points. Each
of the saddle points represents an event in a sequence to be remembered. The specific structure
of the phase space is such that each saddle point can have many stable directions but only a single
unstable direction. All saddle points are unidirectionally connected by these one-dimensional unstable
separatrices. Once the state of the system approaches one fixed point representing a certain event,
it is drawn along an unstable separatrix toward the next fixed point, and so on.

The existence of such heteroclinic structure is determined by specific connections between neurons
within the WLC neural network. These connections are formed by the sensory inputs caused by
sequential events in a sequence.”
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In order to simulate the dynamics of processes in the brain it makes sense to use dynamical
systems containing strange attractors or, more general, mixing attractors. (We say that a set A of
the phase space of a dynamical system is a mixing attractor if A is an attractor (i.e., an invariant
closed set attracting all points from some its neighborhood) such that any two subsets of A, open
relatively A, intersect with time.) Using such dynamical systems, we get great opportunity for
modelling the information processing: mixing attractors usually contain a countable set of saddle
cycles and an uncountable set of homoclinic and heteroclinic orbits connecting these cycles.

Even one-dimensional maps allow us to show the advantage of such possibility[4]-[6]. In typical
situation every mixing set A contains a huge number of local repellors, in particular, periodic orbits
that form a dense subset of A. The most important representers of such repellors are so-called
locally maximal ω-limit sets (or basis sets): an ω-limit set B is called locally maximal set (LMS) if
there exists its neighbourhood which does not contain any ω-limit set B̃ ⊃ B. For one-dimensional
dynamical systems, each LMS is always a finite set (i.e., a cycle) or a Cantor set with a dense subset
of periodic orbits (these Cantor sets are mutually disjoint or are nested, one within the other).

For our goals, of importance are the following properties of one-dimensional dynamical systems:
• Each LMS, being a local repellor, is a saddle (a set of saddle type) because of

the presence of the feedback phenomenon.
• Any two LMS are connected by a huge number of heteroclinic orbits, and moreover,

each such heteroclinic orbit “reachs” the LMS in a finite time.
• For any collection of LMS, there is a heteroclinic contour (closed path) connecting

all these LMS (and in an arbitrary order).
• And finally, by the use of local perturbations only, it is possible to transform each LMS

(which is a repellor) into an attractor.
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Below we are restricted ourselvs to the simple difference equation

xn+1 = f(xn), n = 0, 1, 2, ...,

i.e., we consider the case of discrete time. Moreover, we assume that x is a scalar, i.e., x ∈ R1, and
the function f is unimodal, i.e., f has one maximum only. Such functions also generate dynamical
systems with mixing attractors but they are essentially simpler both for mathematical study and in
their physical realization. For simlicity, we can think that f is a quadratic function, for example,
the “chaotic parabola” f(x) = 4x(1− x) or the tent map

f(x) =
{

2x, 0 ≤ x < 1/2,
2(1− x), 1/2 ≤ x ≤ 1.

Let M = {p1, p2, ..., pk}, 1 < k < ∞, be a set of periodic points belonging to k cycles of
f , which represent “stored episodes (events)” of the “stored information” in the memory.

For the tent map or the “chaotic parabola” and for other similar (for example, topologically
conjugated to them) maps, all periodic orbits are local repellors. If there are no input signals,
the random walk by “stored episodes” happens in the memory. This walk is subordinated to the
probability distribution generated by the invariant measure of f . So, each “episode” ps ∈M can
“be lifted” from the memory in a short time interval determined by orbit’s instability (for example,
the Lyapunov exponent) and some “identification threshold” for ps.

Another situation takes place when a certain input signal arises, for example, in a response to
the question “Do you know Mr X?”. If “Mr X” corresponds to ps, then this signal should change
its associated unstable cycle Ps = {f i(ps), i = 0, 1, ...} to a cycle which is attractive on the certain
time interval. It is an easy metter to get this desirable attractive cycle instead the repulsive one.
For example, we can assume that the impulse

g(x) =
{

f ′(ps)(x− ps), |x− ps| < δs,
0, |x− ps| ≥ δs,

is just the answering reaction. Herein δs is the “identification threshold” of ps. In this case, for
the difference equation

xn+1 = f(xn) = f(xn) + g(xn),

the cycle Ps is attractive because for the (discontinuous) map f the multiplicator of Ps is equal
to 0. Moreover, when f is an arbitrary quadratic (or tent) map, the cycle Ps is a “global”
attractor for f , and almost each orbit is attracted by this cycle very quickly.

Put
xn+1 = f(xn, n) = f(xn) + g(xn, n),

where

g(x, n) =


{

f ′(psi)(x− psi), |x− psi | < δsi ,
0, |x− psi | ≥ δsi , psi ∈M,

ni ≤ n < ni,

0, ni ≤ n < ni+1, i = 1, 2, ...,

ni, ni ∈ N, n1 < n1 ≤ n2 < ..., δsi is the “identification threshold” for psi . It is easy to see
that the previously unstable cycle Psi = {psi , f(psi), f

2(psi), ...} is transformed into a stable one,
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and moreover, for the tent map or the “chaotic parabola”, this cycle will be a temporary attractor
of the map f on the time interval [ni, ni].

We say that a set A is a temporary attractor on the time interval [m1,m2] for the (nonautho-
nomous) DS generated by the equation xn+1 = h(xn, n) if h(x, n) is independent of n for n ∈
[m1,m2] and A is an attractor of DS generated by the equation xn+1 = h̃(xn), where h̃(x) =
h(x, n), n ∈ [m1,m2].

By the same way, one can transform a Cantor set which is a locally maximal ω-limit set for the
original map f into a temporary attractor of some map f (“excited” by a corresponding exterior
impulse). Let p′s = f−j(ps) /∈ Ps, 1 ≤ j < ∞, and g(x, n) be as above but ps be replaced
with p′s. In this case, instead the cycle Ps, some Cantor set Ks containing Ps will be a temporary
attractor of the map f on the corresponding temporal interval. This set Ks has to be just a
locally maximal ω-limit set for the original map f .

Of course, similar considerations are also applicable to multidimensional maps.
It is important to study main properties of dynamical systems under such or similar pertur-

bations. It is desirable to know the average time in which a trajectory reaches an LMS and the
dependence of this time on the system parameters, the output signal, and etc. We can remark that
the average time of reaching an LMS in the models considered above should be ≈ 1/δ, where δ is
the “identification threshold” of the LMS.
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