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Abstract
In a previous study [Konishi, Takeuchi, Shimizu,

Chaos 2011], the authors proposed a simple system-
atic design procedure that employed periodic impulsive
and time-continuous feedback forces to eliminate trav-
eling waves in a piecewise linear FitzHugh–Nagumo
(FHN) model. As the previous study used only the in-
tegral control method in classical control theory, it was
not easy to specify the system performance. Therefore,
the present paper introduces an optimal control method
in modern control theory that can specify the system
performance. Furthermore, we show that the designed
force is valid not only for the piecewise linear function
but also for a class of smooth nonlinear FHN models.
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1 Introduction
Excitable media such as cardiac tissue and the

Belousov–Zhabotinsky (BZ) reaction have received
considerable attention in the field of nonlinear science
(Mikhailov and Showalter, 2006). It is known that spa-
tial waves and spatiotemporal chaos in cardiac tissue
induce major health problems, because irregular ac-
tivation, such as ventricular tachycardia and ventric-
ular fibrillation, decreases the ability of the heart to
pump blood. A current treatment for irregular activa-
tion is applying a high-voltage electric shock to the pa-
tient’s chest. However, this shock often causes physi-
cal and mental strain to the patient. Therefore, a prac-
tical use of low-voltage electric shock is anticipated
(Sinha and Sridhar, 2008; Takagi et al., 2004). In addi-
tion, the BZ reaction have attracted increasing interest
(Mikhailov and Showalter, 2006). It was reported that
light-intensity feedback control can stabilize and track
unstable propagating waves in a photosensitive BZ re-
action (Mihaliuk et al., 2002; Sakurai et al., 2002).

A number of researchers have proposed various feed-
back control methods to eliminate spatiotemporal be-
havior in excitable media (Sinha and Sridhar, 2008).
Yuan, Chen, and Yang showed that an external force
injected into resting regions can counter and eliminate
propagation waves (Yuan et al., 2007). The global
feedback control proposed by Yoneshima, Konishi, and
Kokame uniformly applies a force to the medium by
sensing the medium activity (Yoneshima et al., 2008).
Guo et al. proposed local feedback control that iden-
tifies the spiral tip areas and makes them unexcitable.
This method can experimentally eliminate spiral tur-
bulence (Guo et al., 2010). Sakaguchi and Nakamura
eliminated breathing spiral waves in the Aliev–Panfilov
model by using delayed feedback control (Sakaguchi
and Nakamura, 2010).

From the practical viewpoint, it would be useful to
understand the systematic design of the external forces
involved in the elimination of spatiotemporal behav-
ior. This is because a systematic design would not
require trial-and-error testing. However, most stud-
ies on the elimination of spatiotemporal behavior em-
ployed only numerical simulations (Sinha and Srid-
har, 2008). A systematic design procedure for a single
impulsive nonfeedback force was provided by Osipov
and Collins (Osipov and Collins, 1999). Although pe-
riodic impulsive and time-continuous feedback forces
have the potential to achieve low-amplitude elimina-
tion, their procedure cannot be used for such forces.
Our previous study proposed a simple systematic de-
sign procedure for such forces (Konishi et al., 2011).
This study focused on a one-dimensional FitzHugh–
Nagumo (FHN) model with a piecewise linear function
(Ohta and Kiyose, 1996; Ohta et al., 1997; Koga, 1993;
Rinzel and Keller, 1973; Tonnelier, 2003b; Tonnelier,
2003a) and obtained simple analytical results. The pro-
posed procedure is useful for designing nonfeedback
and feedback control systems. However, in our previ-
ous study, the following problems, which are impor-
tant subjects from a practical viewpoint, remained un-



Figure 1. Spatial distribution of the traveling wave.

solved: (i) it is impossible to specify the system per-
formance including the transient time for elimination
and the amplitude of the external force for designing
the feedback controller; (ii) it is unclear whether the
procedure can be used for an FHN model with smooth
nonlinear functions.
The present paper shows that problems (i) and (ii) can

be solved using modern control theory and a smooth
nonlinear function, respectively. As our previous study
(Konishi et al., 2011) used only the integral control
method in classical control theory, problem (i) could
not be systematically solved. On the other hand, this
paper introduces an optimal feedback control method
in modern control theory to systematically solve prob-
lem (i). Furthermore, for problem (ii), the force de-
signed by our procedure for the piecewise linear FHN
model is applied to a smooth nonlinear FHN model.
We find that the designed force is valid not only for the
piecewise linear model but also for a class of smooth
nonlinear models.

2 Piecewise linear FHN model
Now consider the one-dimensional piecewise linear

FHN model (Ohta and Kiyose, 1996; Ohta et al., 1997;
Koga, 1993; Rinzel and Keller, 1973):

⎧⎪⎪⎨
⎪⎪⎩

∂u(x, t)
∂t

= f [u(x, t)] − v(x, t) + D
∂2u(x, t)

∂x2

∂v(x, t)
∂t

= ε{u(x, t) − γv(x, t)} + e(t)
,

(1)

f [u] = H[u − u∗] − u, (2)

where u(x, t) and v(x, t) are fast and slow variables,
respectively. x denotes position and t is continuous
time. The diffusion coefficient for the fast variable
is denoted by D > 0. Here 0 < ε � 1 and γ ∈
(0, u∗/(1 − u∗)) are parameters. u∗ ∈ (0, 1/2) is the
threshold of f [u] and H represents the step function.
The weak external force e(t) is applied with spatial
uniformity to the slow dynamics. Let us assume that
a traveling wave propagates through a one-dimensional

Figure 2. Block diagram of state feedback with integral control.

space x ∈ (−∞,+∞). Figure 1 charts the spatial dis-
tribution of the traveling wave.

3 Feedback control
In this section, we derive a linear time invariant system

(Konishi et al., 2011) and design an optimal feedback
controller on the basis of a linear quadratic regulator.

3.1 Linear time invariant system
This subsection reviews our previous work (Konishi

et al., 2011). The velocity of the traveling wave at the
wavefront (curve AB in Fig. 1), cf , is given by

cf = {1 − 2(u∗ + vf )}
√

D

(u∗ + vf )(1 − u∗ − vf )
.

(3)
The wavefront velocity cf depends on v(x, t) = vf in
front of the wave (A–A’ region in Fig. 1). u(x, t) and
v(x, t) have spatial uniformity in the A–A’ region. As
the external force e(t) is applied in a spatially uniform
manner to the entire medium, u(x, t) and v(x, t) main-
tain their spatial uniformity in this region. They can be
considered as variables uf (t) and vf (t) in this region.
In addition, the wavefront velocity satisfying Eq. (3)
can also be a time variable cf (t). Because u(x, t) and
v(x, t) in this region have spatial uniformity, we can
neglect the diffusion term in Eq. (1). As uf (t) < u∗,
the nonlinear function is simplified to f [u] = −u. The
parameter ε is assumed to be a sufficiently small pos-
itive value; thus, we ignore the fast mode and focus
only on the slow dynamics. In consequence, the force
e(t) and variable vf (t) are approximately given by the
linear time invariant (LTI) system

{
ẇ(t) = aw(t) + be(t)

vf (t) = cw(t)
, (4)

where w(t) describes the slow dynamics and the sys-
tem parameters (a, b, c) are written as

a := η(+), b := − 1
η(+) − η(−)

, c = −1 − η(+),

η(±) := {−(1 + εγ) ± √
(1 − εγ)2 − 4ε}/2.



3.2 Controller
This paper proposes state feedback with integral con-

trol (Kuo and Golnaraghi, 2003), as shown in Fig. 2,
to eliminate traveling waves. The external force e(t) is
given by

{
e(t) = k1w(t) + k2z(t)

ż(t) = r(t) − vf (t)
, (5)

where z(t) is the additional variable and k1,2 are the
feedback gains to be designed. Our main goal is to
stop the traveling wavefront (i.e., limt→+∞ cf (t) = 0);
thus, according to Eq. (3), the controller must track
vf (t) to 1/2 − u∗. To this end, the reference signal
r(t) should be a step input with amplitude 1/2 − u∗.
We use the additional variable z(t) because the integral
unit is required to perform tracking without a steady-
state error.
Let us design the gains k1,2 by using a linear quadratic

regulator (Zak, 2002). Combining LTI system (4) and
controller (5), we have

{
ẋ(t) = Ax(t) + be(t) +

[
0 1

]T
r(t)

vf (t) = cx(t)
, (6)

e(t) = kx(t), (7)

where x(t) :=
[
w(t) z(t)

]T is the system variable. The
system matrices (A, b, c) and the feedback gain vector
k are written as

A :=
[

a 0
−c 0

]
, b :=

[
b
0

]
, c :=

[
c
0

]T

, k :=
[
k1

k2

]T

.

(8)
Because it is obvious that (A, b) is controllable (i.e.,

det
[
b Ab

]
= −b2c �= 0), the feedback gain k can be

designed by a simple procedure. To obtain optimal sys-
tem performance, this study employs a linear quadratic
regulator: controller (7) is designed as follows such that
the performance index is minimized:

J =
∫ ∞

0

{
x̄(t)T Qx̄(t) + μē(t)2

}
dt, (9)

x̄(t) := x(t) − x∞, ē(t) := e(t) − e∞,

where x∞ := limt→∞ x(t) and e∞ := limt→∞ e(t).
Here Q > 0 and μ > 0 are the weights that can be
arbitrarily chosen. The feedback gain is given by

k = − 1
μ

bT P , (10)
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Figure 3. Spatial distribution of the traveling wave with integral
control (k1 = 0, k2 = 0.003).

Figure 4. External force with integral control (k1 = 0, k2 =
0.003).

where P =
[
p11 p12

p12 p22

]
> 0 satisfies the algebraic Ric-

cati equation

AT P + PA + Q − 1
μ

PbbT P = 0. (11)

Now let us design the feedback gain k according to
the above procedure. For simplicity, the weight Q is
fixed at Q = diag {q1, q2}. Substituting Eq. (8) into
Eq. (11), we have

p12 =
√

μq2/b2,

p11 =
{

aμ +
√

a2μ2 − b2μ(2cp12 − q1)
}

/b2,

p22 = p12(a − b2p11/μ)/c.

Here we obtain optimal gain (10),

k1 = − 1
μ

bp11, k2 = − 1
μ

bp12. (12)

Therefore, we have an optimal feedback controller (5)
with gain (12).

3.3 Numerical examples
Throughout this paper, we assume that the parameters

of FHN model (1) are known and fixed at

u∗ = 0.2, D = 1.0, ε = 0.03, γ = 0.1. (13)
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Figure 5. Spatial distribution of the traveling wave with optimal
control (case (I): k1 = 0.0598, k2 = 0.0041).

Figure 6. External force with optimal control (case (I): k1 =
0.0598, k2 = 0.0041).

The explicit Euler method is used with time step δt =
0.01 and space step δx = 0.3. Let us review the numer-
ical result of the integral control, which corresponds
to a particular case of controller (5) (i.e., k1 = 0 and
k2 > 0), discussed in our previous work (Konishi et al.,
2011). Figures 3 and 4 show the spatial distribution of
the traveling wave and the external force just before
and after the control start time (t = 0). For t > 0,
the wavefront AB slows down and the wave back CD
maintains its velocity, and then, the wave back catches
up with the wavefront. Eventually, the traveling wave
disappears at t ≈ 34.5.
Now we design the optimal controller proposed in

the preceding section. Consider the two specifications
of system performance: (I) preference for a low peak
force and (II) preference for the rapid elimination of
traveling waves.
For case (I), the weights in index (9) are set to q1 =

q2 = 1.0 and μ = 6 × 104. From these weights
and parameters (13), optimal gain (12) can be obtained:
k1 = 0.0598 and k2 = 0.0041. The spatial distribution
of the traveling wave and the external force are shown
in Figs. 5 and 6. It can be observed that compared with
the results of integral control shown in Figs. 3 and 4,
the peak force is small.
For case (II), the weights are set to q1 = q2 = 1.0

and μ = 250. Optimal gain (12) can be obtained: k1 =
0.3135 and k2 = 0.0632. The spatial distribution of the
traveling wave and the external force are shown in Figs.
7 and 8. We observe that the traveling wave rapidly
disappears. From the two cases, it can be numerically
confirmed that the optimal controller works well.
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Figure 7. Spatial distribution of the traveling wave with optimal
control (case (II): k1 = 0.3135, k2 = 0.0632).

Figure 8. External force with optimal control (case (II): k1 =
0.3135, k2 = 0.0632).

4 FHN model with smooth nonlinear functions
This section investigates whether the force designed

for the piecewise linear FHN model is valid for smooth
nonlinear FHN models. Let us introduce the smooth
nonlinear function shown in Fig. 9:

f [u] = −u + 0.5 + 0.5 tanh(α(u − u∗)). (14)

Note that this function converges on piecewise linear
function (2) as α → +∞. We have observed that the
traveling wave can propagate in the FHN model with
function (14) for α ≥ 10; however, it cannot propagate
for α < 10. We have numerically confirmed that the
integral controller (k1 = 0, k2 = 0.003) and the opti-
mal controller (k1 = 0.3135, k2 = 0.0632) designed
for the piecewise linear FHN model are valid for the
smooth nonlinear FHN model for α ≥ 10. Figure 10
shows the optimal control of the traveling wave in the
FHN model with function (14) (α = 10). It can be ob-
served that the designed controller works well even for
the FHN model with smooth function (14).

5 Conclusion
This paper provided a systematic procedure for de-

signing an optimal feedback controller to eliminate the
traveling waves in the piecewise linear FHN model.
The designed controller achieves our goal: rapid dis-
appearance of traveling waves and a low peak force.
Furthermore, it was shown that the controller designed
for the piecewise linear FHN model is valid for a class
of smooth nonlinear FHN models.



Figure 9. Smooth nonlinear function f [u] (u∗ = 0.2).
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Figure 10. Spatial distribution of the traveling wave in optimal con-
trolled FHN model with function (14) (α = 10, k1 = 0.3135,
k2 = 0.0632).

Acknowledgments
This research was partially supported by the Casio

Science Promotion Foundation.

References
Guo, W., Qiao, C., Zhang, Z., Ouyang, Q. and Wang,

H. (2010). Spontaneous suppression of spiral tur-
bulence based on feedback strategy. Phys. Rev. E,
81, pp. 056214.

Koga, S. (1993). Stably propagating periodic waves in
intrinsically bistable reaction-diffusion systems.
Prog. Theor. Phys., 90, pp. 1361–1366.

Konishi, K., Takeuchi, M. and Shimizu, T. (2011).
Design of external forces for eliminating travel-
ing wave in a piecewise linear FitzHugh–Nagumo
model. Chaos, 21, pp. 023101.

Kuo, B. and Golnaraghi, F. (2003). Automatic Control
Systems. John Wiley & Sons.

Mihaliuk, E., Sakurai, T., Chirila, F. and Showalter, K.
(2002). Feedback stabilization of unstable propa-
gating waves. Phys. Rev. E, 65, pp. 065602.

Mikhailov, A. and Showalter, K. (2006). Control of
waves, patterns and turbulence in chemical sys-
tems. Phys. Reports, 425, pp. 79–194.

Ohta, T. and Kiyose, J. (1996). Collision of domain
boundaries in a reaction-diffusion system. J. Phys.
Soc. Jpn., 65, pp. 1967–1970.

Ohta, T., Kiyose, J. and Mimura, M. (1997). Collision
of propagating pulses in a reaction-diffusion sys-
tem. J. Phys. Soc. Jpn., 66, pp. 1551–1558.

Osipov, G. V. and Collins, J. J. (1999). Using weak
impulses to suppress traveling waves in excitable
media. Phys. Rev. E, 60, pp. 54–57.

Rinzel, J. and Keller, B. (1973). Traveling wave solu-
tions of a nerve conduction equation. Biophys. J.,
13, pp. 1313–1337.

Sakaguchi, H. and Nakamura, Y. (2010). Elimination
of breathing spiral waves in the Aliev–Panfilov
model. J. Phys. Soc. Jpn., 79, pp. 074802.

Sakurai, T., Mihaliuk, E., Chirila, F. and Showalter,
K. (2002). Design and control of wave propaga-
tion patterns in excitable media. Science, 296, pp.
2009–2012.

Sinha, S. and Sridhar, S. (2008). in Handbook of Chaos
Control (2nd edition). Wiley-VCH Verlag.
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