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Abstract: This paper deals with the control problem of complex objects on the base of 
the model reference adaptive principle. For decomposition and precise control new al-
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1. INTRODUCTION 

 
As a complex we consider an object with some inter-
connected subsystems (Voronov, 1985; Šiljak, 1991). 
A mathematical model (MM) of such an object is 
usually nonlinear and nonstationary one. Synthesis of 
control algorithms for such an object is not a simple 
problem. Usual if not a single method for this goal is 
decomposition and aggregation (Voronov, 1985; Šil-
jak, 1991). The decomposition could be realized on 
“physical” or “mathematical” principles (Šiljak, 
1991). For every subsystem a local good control (in 
any sense) is discovered provided that interconnec-
tions are missing. Then it is necessary to prove that 
the good behavior of the system on the whole takes 
place (Voronov, 1965; Šiljak, 1991).  
 
In this paper we use other an approach:   for every 
subsystem a component of interconnections is se-
lected and compensated on the base of adaptive con-
trol. More correctly the approach includes the use 

• of computer aided control (Zemlyakov and 
Rutkovsky, 2004); 

• of a programmed adaptive control; 
• of a model reference adaptive control (Zem-

lyakov and Rutkovsky, 1966; Pertrov, et al., 
1980). 

 
A local adaptive control system for an object subsys-
tem could be synthesized on the base of traditional 
algorithms for a model reference adaptive approach. 
In result the adaptive system will be nonlinear and 
nonstationary. It is known that for such a system is 
difficult to supply good dynamics not speaking about 
precise control (Zemlyakov and Rutkovsky, 1966; 

Pertrov, et al., 1980). So in this paper we derive new 
nontraditional algorithms for a system with reference 
model that are capable to guarantee the desiered pre-
cise control. 
 

2. PROBLEM STATEMENT 
 

Consider a complex object (Zemlyakov and 
Rutkovsky, 2004) described by the differential equa-
tion 
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During the object’s operating 
• matrices sA(q),  D (q), S(q) (s=1, ) n are 

known (Zemlyakov and Rutkovsky, 2004); 
• vectors ( ), ( )q q t q q t= =� �  are measurable. 
 
For every ( 1, )iq i n=  there exists a function 

0 ( )iq t and an equation 
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where the function  0 ( )iq t  and the numbers 

0, 0i ik d> >  are prescribed in advance.  
 
The problem: 
 
It is necessary to discover control algorithms 
 
           ( , , )M M t q q= �                             
 
that guarantees the motion (2). 
 
 

3. DECOMPOSITION OF AN OBJECT 
MATHEMATICAL MODEL 

 
Let an object with MM (1) is decomposed to N sub-
systems according to the physical principle (Šiljak, 
1991) 
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where ( ) 0,iiA q > ,j jq M  are components of 
vectors q , M  
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Dimensions of the vectors ,j jq M  ( 1, )j N=  are 

equal jn  and 
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The MM for any subsystem could be written in the 
form 
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4. MATHEMATICAL MODEL OF A 
SUBSYSTEM WITH ACTUATORS 

 
Different subsystems could have actuators of differ-
ent nature. In this paper we consider only dc motors 
as actuators. The MM of dc motor is well known 
(Krutiko, 1991) 
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where lN  is the number of subsystems with dc mo-
tor actuators. 
 
In (4) id

jM  is a moving moment of a motor;  i
jM  is 

a moment for a load rotation;  i
jr  is a reduction coef-

ficient; , , , ,i i i i i
j j j mj jJ R k kωτ  are motor constructive 

parameters; i
ju  are control algorithms to be discov-

ered. 
 
Let the MM of an object subsystem with dc motor 
actuators has the form (3). To the equation (3) it is 
necessary to add the equations for actuators (4) pre-
sented in matrix form 
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where 
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From (3) and (5) the MM of a subsystem movement 
together with actuators accepts the form 
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For  control algorithms synthesis it is possible 
(Krutiko, 1991) to take the condition 
 
                             0iτ =                    
 
and to simplify the system (6) to the form 
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5. ADAPTIVE PROGRAMMED CONTROL OF 
AN OBJECT SUBSYSTEM 

 
The MM of an object subsystem with dc motor actua-
tors (7) could be presented in the form 
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The condition 
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is usually right. 
 
 Let us take a control algorithm in the form 
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Equalities (8) and (9) together give an equation 
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From the equation (10) we see that if it is valid the 
equality  
 
            [ ( , , , ) ] 0i if t q q q S+ ≡� ��                          (11) 
 
then the movement of a subsystem with number 

li N∈  is decomposed on in  separate subsubsys-
tems with MM 
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From (2) and (12) we see that the control algorithm 
(9) gives the problem solution if the equality (11) 
takes place.  
 
 
6. MODEL REFERENCE ADAPTIVE CONTROL  

 
Below we will try to hold up the equality (11) on the 
base of model reference adaptive control (Pertrov, et 
al., 1980). Adaptive algorithms will not be traditional 
as in (Zemlyakov and Rutkovsky, 1966; Pertrov, et 
al., 1980) but more constructive for precise control. 
 
If the equality (11) does not take place than the equa-
tion (12) takes the form 
 

 ( )
0 ( ) ( )

1, ,

i i i i i i i i i
j j j j j j j j j

i

q d q k q k q t f t S

j n

+ + = + +

=

�� �
    (13) 

 
where ( ) ( , , , )i i

j jf t f t q q q= � �� . 
 
Let us choose a reference model in the form 
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and with the equality 
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we receive from (13) and (14) the equation with re-
spect to the error i

jε  in the form 
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With notation 
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We will try to choose an algorithm for i

jS  purposeful 
variation from the condition of the asymptotical con-
vergence of the system (16) movement  with respect 
to the movement 
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For this goal we take a Lyapunov function in the 
form 
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where i

jQ  is the prescribed negative definite matrix, 

21 1 22 2( ),i i i i i i
j j j rkp x p x pσ = +  are elements of the 

matrix ( ) ( , 1, 2)i i
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For an analytical result we suppose that the sign of 
the coordinate i

jy  is known. Really it is possible 
only to approach to this assumption by different way. 
In the paper we do not concentrate on this question. 
One simple possible way will be accepted for simula-
tion.  Then we choose the desired algorithm in the 
form 
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We suppose that the inequality 
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takes place. Then we have the result 
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which ensure the solution of the problem. 
   
     

7. SIMULATION RESULTS 
 

For simulation we consider a space robotic module 
(SRM) (Zemlyakov and Rutkovsky, 2004) as a com-
plex object with MM (1).  As a mechanical object 
SRM has a big number of degrees of freedom. MM 
of an SRM is nonlinear multiconnected nonstationary 
one. Automatic control by such an object is not a 
simple problem. At the same time  SRM operating 
demands precise dynamic accuracy to provide for its 
safety, for the safety of objects with which it inter-
acts. 
 
On the base of “physical principle” (Šiljak, 1991) the 
MM of SRM could be divided on two interconnected 
subsystems: subsystem for the carrying body and 
subsystem for manipulators (Zemlyakov and 
Rutkovsky, 2004). Control algorithms for the carry-
ing body subsystem could be synthesized on the base 
of rely control, Pontryagin maximum principle and 
the direct Lyapunov method (Zemlyakov and 
Rutkovsky, 2004). Here we will try to synthesize 
control algorithms for the manipulators subsystem on 
the base of adaptive control (Zemlyakov and 
Rutkovsky, 1966; Pertrov, et al., 1980). 
 
We assume that the decomposition problem is solved 
and now it is necessary to show that algorithms (19) 
really provide precise control of  ( )iq t  with respect 

to 0 ( )iq t  in (2).  

Let 0.25i
jk =  and 0.7i

jd =  in (13), 

0.05 0
0 0.05
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 in (18). Then 

0.11 0.10
0.10 0.18
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 in (17) and hence 

1 2(0.1 0.18 )i i i
j j jx xσ = +  in (18). 
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Let 0 ( ) sin(0.15 )i
jq t t= . In fig.1.a under the num-

ber 1 we see 0 ( )i i
j jk q t  and under the number 2  

0 ( ) ( )i i i
j j jk q t f t+ . The term ( )i

jf t  disturbs 
0 ( )i i

j jk q t  significantly. In fig.1.b under numbers 1 

and 2 respectively we see ( )i
jq t  and ( )i

mjq t  under 

condition ( ) 0.i
jS t ≡  Of course without adaptation 

in fig.1.b the difference ( ) ( ) ( )i i i
j j mjt q t q tε = − is 

significant. In fig.1.c ( ) 0.i
jS t ≠ We see that ( )i

jq t  

practically coincides with ( )i
mjq t . 

 
Fig.2 shows the same result for another function 

0 ( )i
jq t .  

 

 
 

Fig. 1. 
 

 
Fig. 2. 
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