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Abstract
The article describes possibility of increasing the ef-

fectiveness of dielectric systems research through sys-
tematization of causal relationships between electric
fields according to the Lorentz model. The research
also shows the objective reason for causing negative
qualities of the dielectric constant of the Clausius-
Mossotti formula. Authors propose proper way of iden-
tifying the low-frequency of polarization process.
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1 Introduction
Forced electric polarization of dielectric charged par-

ticles, discovered by Faraday, is one of the fundamental
characteristics of matter. The theory of electron polar-
ization, developed by Lorentz, is the conceptual basis
of most of the existing electromagnetic nature repre-
sentations. An example is the so-called Lorentz local
field correction, which is the part of traditional wide de-
scription of polarization processes. Lorentz local field
correction is also considered to be the classical equa-
tion of the relative permittivity (theory of Clausius-
Mossotti).
However, despite the well-deserved popularity of this

formula, current researches revealed the number of sig-
nificant computational drawbacks, which, as a rule,
are connected with the drawbacks of the original in-
terpretation of the intensity model of Lorentz field con-
cept [Böttche and Bordewijk, 1992; Bonin and Kresin,
1997; Raju, 2003; Potapov, 2004]. The traditional
way out of this situation is seen as the need to gen-
erate subjective corrections, introduced into the basic
formula, to account the polarized state of the particles
filling local microscopic Lorentz’s sphere [Bernardo et
al., 1994; Kootstra, Baci and Snijders, 2000; Jensen,
2002; Van Duijnen et al., 2002].

In turn, the alternative solutions of this problem can
be obtained by integrating the classic theory of the
dielectrics polarization with mathematical methods of
technical cybernetics, carried out with the purpose of
the system describing the properties of a physical sys-
tem, identified by allocating existing feedbacks [Ott,
Grebogi and York, 1990; Fradkov, 1999; Fradkov and
Jakubowsky, 2003; Fradkov, 2003; Fradkov, 2005].

2 The Inductive Model of Dielectric Permittivity
Historically, the first theoretical premise, used to ex-

press the strength of the electric field effectively act-
ing in a polarized dielectric, called E, was a theoret-
ical model of middle macroscopic field, proposed by
Faraday. At the same time the essence of the for-
mal description of magnitude Em was the implemen-
tation of composition (superposition) of external field
strength E0 and a common set of micro field intensity,
induced by polarized particles in the sample [Hippel,
1960; Decker, 1962]:

Em = E0 −
1

ε0

K∑
i=1

µiNi, (1)

where ϵ0 – free space permittivity; K – the total num-
ber of particles’ variety; µiand Ni – induced dipole mo-
ments and their concentrations.
Therefore, as part of hypothesis that secondary macro-

scopic field is equivalent to the effective field E (if
E0 = εEm), the average macroscopic field strength
is calculated as:

Em =
1

(ε− 1)ε0

K∑
i=1

µiNi, (2)

where ε – relative dielectric constant of the sample.
However, the subsequent theoretical analyses of polar-

ized micro field interaction induced in the metaphysical
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sample, necessitated entering a certain number of ad-
justments into the description of effectiveness of elec-
tric field tension. As a result, we managed to formulate
some new formula of its quantity, based on the contin-
uum model of the Lorentz’s sphere:

E = Em + E1 + E2, (3)

where E1 – tension of macroscopic field, formed by
exiting of dipole chains on the surface of an imaginary
sphere of containment; E2 – tension of microscopic
fields, generated inside the sphere.
The quantity of the macroscopic field E1 is tradition-

ally defined by integrating the charge density, induced
on the outer surface in local microscopic Lorentz’s
sphere, as follows:

E1 =
1

3ε0

K∑
i=1

µiNi. (4)

In turn, the microscopic field strength E2, determined
by particle polarization inside the sphere, is regarded as
equal to zero, with the account of symmetrical dipole
charges’ mutual compensation, noted by Mossotti.
Consequently, the formal unification of the formu-

las (2) and (4) provides a classical formula of relative
transmittivity by Clausius-Mossotti:

ε− 1

ε+ 2
=

1

3ε0

K∑
i=1

αiNi, (5)

where αi – electric polarizability of the particles. In
addition, when considering the dynamic properties of
the dielectric medium, such as the processes of elastic
electron polarization in the framework of the classical
theory, researches often use the formula of equation of
forced oscillations of the electromagnetic liners, set by
the harmonic oscillator:

d2µk(t)

dt2
+ 2βk

dµk(t)

dt
+ ω2

0kµk(t) =
q2k
mk

E0(t), (6)

k = 1,K,

where βk and ω0k – damping factors and natural fre-
quencies of specific particles; qk and mk – their charge
and mass. It is obvious enough that the general solu-
tion of this equation in the complex domain enables to
denote the complex polarizability of particle as α(jω):

αk(jω) =
q2k/mk

ω2
0k − ω2 + 2βkjω

, k = 1,K. (7)

Thus, the direct substitution of formula (7) into for-
mula (5) leads to inductive generation of traditional

complex formula of dielectric constant by Lorenz-
Lorentz-Clausius-Mossotti, that takes the following
form with function ε(jω):

ε(jω) = 1 +

1

ε0

K∑
i=1

αi(jω)Ni

1− 1

3ε0

K∑
i=1

αi(jω)Ni

. (8)

It should be noted, that all the above presented for-
mulas are the most common for dielectric processes in
practical calculations. However, their ultimate effec-
tiveness is more acceptable in consideration of crystals
and liquids with mild polarization properties. The use
of mentioned formulas in the study of active dielectrics
can demonstrates awkward results. This well-known
fact is named as “Mossotti disaster”, as it is usually as-
sociated with inadequate approximation E2 = 0.
On the one hand, the possibility of expanding the

scope of mentioned formulas is implemented by en-
tering some subjective corrections to characterize the
real quantity of micro field voltage, induced within the
scope of the continuum Lorentz’s sphere. However,
their numerical values are calculated theoretically or
empirically for individual material, which is regarded
as quite difficult and time-consuming computational
task.
On the other hand, the “Mossotti disaster” can be

directly related to the mathematical structure of the
static formula of permittivity. Indeed, considering the
Clausius-Mossotti formula (5) in the form of a func-
tional dependence ε(P ), similar to the general type of
formula (8), which takes into account the total polariza-
tion of particles of the sample (P ), it can be seen that
this function suffers the inevita-ble gap of the second
kind under asymptotic condition P = 3ε0 (Figure 1).

Figure 1. The dependence of the permittivity according to for-
mula (5).

This circumstance leads to the generation of nega-
tive quantities of the dielectric transmittivity of actively
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polarized fused environments, calculated by means of
Clausius-Mossotti formula.

3 Cybernetic Model of Effective Field Strength
As shown above, the general conclusion of com-

plex dielectric permittivity formula by Lorenz-Lorentz-
Clausius-Mossotti can be constructed only within the
direct substitution of complex formula α(jω) in a static
formula ε, i.e., by means of classical (inductive) ap-
proach to the description of the polarization charac-
teristics of dielectric permittivity systems. In attempt
to implement more current methods, namely systemic
(deductive) approach, we will have to face such a sit-
uation: when considering the basic interpretation of
polarization in dynamic pattern, we can get some not
extend system of formulas, consisting of K linear-
differential equations, using K +1 variable, which ob-
jectively determines the fundamental impossibility of
finding a comprehensive solution with the help of func-
tion ε(t):

d2µk(t)

dt2
+ 2βk

dµk(t)

dt
+ ω2

0kµk(t) =
q2k
mk

E(t), (9)

k = 1,K;

E(t) =

(
1

(ε(t)− 1)ε0
+

1

3ε0

) K∑
i=1

µi(t)Ni.

In order to eliminate this drawback and to represent
the quantity of the average intensity of the macroscopic
field as a part of the overall structure of function (3), it
is proposed to adopt its basic expression (1) instead of
the traditional formula (2).
In this case, the original system of formulas describ-

ing the dynamics of the total polarization of particles
within the sample, using the model Lorentz-Mossotti
approach, takes the following form [Kostyukov and
Eremin, 2004; Eremin I., Eremin E. and Overchuk,
2005]:

d2µk(t)

dt2
+ 2βk

dµk(t)

dt
+ ω2

0kµk(t) = (10)

=
q2k
mk

E(t), k = 1,K;

E(t) = E0(t)−
1

ε0

K∑
i=1

µi(t)Ni+

+
1

3ε0

K∑
i=1

µi(t)Ni.

Analyzing the formulas (10) from the point of Techni-
cal Cybernetics, we can conclude that they represent
a mathematical model of some closed linear control
system with negative feedback, therefore, simply con-
verted to a second typical form of writing through the

transfer functions:

µk(s) = Wk(s)E(s), E(s) = Wε(s)E0(s), (11)

Wk(s) =
q2k/mk

s2 + 2βks+ ω2
0k

, k = 1,K,

Wε(s) =
1

1 +
2

3ε0

K∑
i=1

Wi(s)Ni

,

where µk(s), E(s) and E0(s) – Laplace’s description
of similar functions; s – complex variable; Wk(s) and
Wε(s) – imposed transfer function.
In addition, the cybernetic description of formulas

(11) makes it possible to generate quite proper visual-
ization of causal relationships between every single el-
ement of the formulas, units of physical systems, com-
mon entrance and output (see Figure 2) by means of
well-known engineering methodology for constructing
block diagrams and their equivalent transformations
[Smith, 1980].

Figure 2. Block diagram corresponding to the cybernetic model of
effective field strength, based on the concept of Lorentz’s sphere.

To understand the physical nature of the entered trans-
fer functions Wk(s), describing the individual micro
processes, as well as the transfer function for the mis-
match Wε(s), which characterize the macroscopic in-
terconnection of the external and effective fields, we
can use their frequency analogues by implementing the
replacement s → jω in complex formula (11):

Wk(jω) =
q2k/mk

ω2
0k − ω2 + j2βkω

, k = 1,K; (12)

Wε(jω) =
1

1 +
2

3ε0

K∑
i=1

Wi(jω)Ni

.

After analyzing the overall structure of the functions
Wk(jω), we can conclude, that they are equivalent to
the complex polarizability of particles (7). In turn, the
frequency transfer function of Wε(jω) is not used in
traditional physics of dielectrics, since it is a complex
coefficient of intensifying, reversed to historical con-
cept of the complex dielectric permittivity. However,
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considering the singularity of its numerator, the denom-
inator Wε(jω) can objectively be regarded as a com-
plete analogue of ε(jω).
Thus, continuous deterministic mathematical transfor-

mations of the initial description of the processes of
the formula (10), which is realized by means of auto-
mated control theory, enables to form cybernetic model
of complex-dielectric constant for condensed sample
[16, 17]:

ε(jω) = 1 +
2

3ε0

K∑
i=1

αi(jω)Ni. (13)

Evaluating the formula as the dependence ε(P ), you
will notice that this function is continuous and mono-
tonically increasing. In other words, cybernetic can ef-
ficiently demonstrates the observed dependence of the
dielectric constant of the sample on the polarization of
the total quantity of its particles (Figure 3).

Figure 3. The dependence of permittivity according to for-
mula (13).

Consequently, there is a fundamental fact, that ex-
cludes the possibility of “Mossotti disaster”, while con-
sidering any material. This has become evident by clar-
ifying the mathematical description of causal relation-
ships between the electric fields, operated in the con-
densed polarized dielectric, as the proposed cybernetic
interpretation of the complex permittivity formula (13)
entirely eliminates the drawbacks of Lorenz-Lorentz-
Clausius-Mossotti formula (8).

4 Objective Reason for the
Classic “Mossotti Disaster”

Let us try to identify the true cause of “Mossotti dis-
aster”, using dielectric polarization representation by
means of logical scheme, corresponding to the formula
of Clausius-Mossotti. Firstly, let us present it as com-

plex analogue to formula (8):

ε(s) =
E0(s)

E(s)
= 1 +

1

ε0

K∑
i=1

αi(s)Ni

1− 1

3ε0

∑
i=1

+Kαi(s)Ni

(14)

αk(s) =
q2k/mk

s2 + 2βks+ ω2
0k

.

As it was mentioned above, a common function of
the complex permittivity of the material is denomina-
tor of transfer function reflecting the dielectric mis-
match fields, which numerator is equal to one. There-
fore, complex formula by Lorenz-Lorentz-Clausius-
Mossotti can be fully represented as a transfer func-
tions:

Wε(s) =
E(s)

E0(s)
=

1

1 +

1

ε0

K∑
i=1

Wi(s)Ni

1− 1

3ε0

K∑
i=1

Wi(s)Ni

; (15)

Wk(s) =
q2k/mk

s2 + 2βks+ ω2
0k

.

It should be noted that, the numerator of the transfer
functions Wε(s) with feedback connections describes
the direct channel elements, and its denominator ex-
presses the amount and composition of forward and re-
verse channel units. In addition, it is necessary to take
into account that the arithmetic sign inside the consid-
ered algebraic sum is determined by the type of feed-
back. For the positive connection it is a minus, and for
negative it is a plus [Egupov et al., 2000].
Thus, using the method of structural schemes, based

on the formula (15), we can receive a block diagram of
the dielectrics polarization process (Figure 4), which
completely coincides with Clausius-Mossotti formula.

Figure 4. The block diagram corresponding to the classical Lorenz-
Lorentz-Clausius-Mossotti formula.

On the one hand, it is obvious, that if following the
overall structure of the formula (8), the first additional
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component of local field E1 is included in the channel
of main negative feedback (NFB), in the system being
studied. In addition, the same element comes into its
own positive feedback (PFB) with sum polarization of
the sample. It is well known that the presence of the
PIC between any of the elements of the system makes
it unstable.
On the other hand, a block diagram of a cybernetic

model of complex permittivity includes the same typ-
ical blocks. However, in the framework of its field,
strength E1 is only an optional module, which has no
fundamental impact on the overall reverse channel con-
figuration of the main NFG for physical system with a
high degree of stability. In addition, the block diagram
(Figure 2) is more consistent with the principle of su-
perposition of fields, declared in the Lorentz model, as
on the basis of its impact, the average macroscopic lo-
cal fields are considered parallel. The structure of the
second scheme (Figure 4) subjectively rated priority
contribution to local field in relation with the depolariz-
ing field, which contradicts the superposition principle.
It should be noted that the cybernetic model of the

complex dielectric permittivity of condensed sample
within the form (13), can be regarded as quite efficient
in terms of practical modeling of polarization spectra,
made of wide range of different materials [Kostyukov
and Eremin, 2008; Eryomin, 2013; Eremin et al., 2010;
Eremin et al., 2011; Eremin et al., 2014; Zhilindina and
Eremin, 2012; Eremin, Zhilindina and Bartoshin, 2014;
Eremin, Eremina and Zhilindina, 2014; Eremin, Erem-
ina and Zhilindina, 2016]. Thus, we can conclude that
the objective reason of “Mossotti disaster” is not the
proposed approximation, but the formal misrepresen-
tation of casual relationships between the components
of the field, effectively operating within the polarized
sample, arose as of inductive inference procedures of
static formulation by dielectric permittivity according
to Clausius-Mossotti formula.

5 Selecting of
Low-Frequency Polarization Process

The essence of the polarization phenomena, excited
by the changed electromagnetic field of low amplitude
to any dielectric system, is regarded as a deviation of
its constituent charged micro particles from their orig-
inal state. All this leads to the forced electromagnetic-
induction of the dipole moments, weakening the ten-
sion of electric field, induced in the test sample, quite
effectively. At the same time, taking into account
the different levels of persistence of certain processes,
caused by significant difference of elementary mass
particles involved, the traditional modeling of dielec-
tric spectra have to be synthesized with detailed math-
ematic description of the system under study, realized
within the sequence transition from the fastest physical
reactions to slow ones.
On the other hand, if the interests of the researchers

are limited by only inertial processes, eg. elastic elec-

tron oscillations of so-called dielectric particles, than
such an approach is considered entirely effective in
terms of overall labor costs. On the other hand, if
the researcher’s purpose is to study any inertial pro-
cesses, for example, elastic ionic, dipole or elastic re-
laxation polarization of the sample, then the description
of the previously established electromagnetic oscilla-
tions is an additional difficulty, overcoming which does
not fundamentally affect the final scientific results.
In order to simplify the given situation, i.e. for ob-

vious understanding of arbitrarily chosen polarization
process K, it is proposed to replace the cybernetic com-
plex of dielectric constant of the general form of the
sample (13) into more private interpretation:

ε(jω) = 1 +
K−1∑
i=1

χi(jω) +
2

3ε0
αk(jω)Nk; (16)

αK(jω) =
q2K/mK

ω2
0K − ω2 + j2βKω

,

where χi(jω) – table data of frequency functions for
complex dielectric susceptibility, characterizing polar-
ization contributions before low-inertia processes set-
tings.
Using the method described above, with the help of

formula (16) we can form a structural diagram of field-
emitted polarization process (Figure 5). It should be
noted that the proposed scheme can not only be directly
used for imitation modeling of transient process, char-
acterizing the studied type of oscillations, but also its
resulting graph won’t include transients processes of
less inertial oscillations, which are specified by their
static contributions.

Figure 5. Block diagram, identifying the resulting contribution of
dedicated low-frequency polarization process.

It is quite obvious that the described approach com-
plicates the technology of preparation of input data. In
turn, optical measurements as indicators of dielectric
materials are considered physically accessible for prac-
tical researching. But in definite form they carry the
necessary information about the missing parameters of
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electromagnetic oscillations for each individual dielec-
tric particles. That’s why they require more detailed
processing of experimental quantities, conducted on
the basis of theoretical models [Zolotarev et al., 1984]:

εRe(ω) = n2(ω)−X2(ω); (17)
εIm(ω) = 2n(ω)X(ω),

where εRe(ω) and εIm(ω) – real and imaginary parts of
the complex dielectric transmittivity; n(ω) and X(ω) –
table data, showing the frequency dependence on frac-
tion and absorption, based on the quality of absorbing
material and luminous flux. This data was formed ac-
cording to physical experiments available in the exist-
ing scientific literature, see eg. [Li, 1976].
Thus, the complex of formulas (16) and (17) al-

lows generating the following final formula for the fre-
quency dependencies of physical characteristics that
can be used directly for the application of scientific and
technological calculation of the resulting spectra:

εRe(ω) = n2(ωmin)−X2(ωmin)+ (18)

+
2Nkq

2
k

3ε0mk
· ω2

0K − ω2(
ω2
0K − ω2

)2

−
(
2βKω

)2 ;

εIm(ω) = 2n(ωmin)X(ωmin)+

+
2Nkq

2
k

3ε0mk
· 2βKω(

ω2
0K − ω2

)2

−
(
2βKω

)2 ,

where ωmin – left border of the frequency range under
study.
In conclusion of this section, we must note that the

particular quantity of n(ωmin) and X(ωmin) should be
chosen in such a way, that their complex can guarantee
the minimum quantity of function εRe(ω).

6 Conclusion
It is obvious that any real physical process is al-

ways non-linear. However, mathematical models of
forced electric deformation of crystalline micro par-
ticles, which are under study, can be quite properly
represented by formulas of linear harmonic oscillation
with friction. This, on the one hand, stimulates the
integration of the fundamental provisions of the clas-
sical physics of dielectrics with mathematical meth-
ods of classical control theory. On the other hand, it
makes overall perspective of dielectric spectra of crys-
tals modeling more efficient for further observations.
Generally, any theoretical concept is the result of in-

strumental studies of the world in case of using fun-
damental laws and principles that connect the studied
physical phenomenon with its internal characteristics.
This connection also determines the relationship be-
tween the properties of the object being studied with in-
ternal structure. In other words, the proposed approach

of constructing cybernetic description of the interaction
dielectric substances with weak electromagnetic fields
can be valuable not only for the development of tradi-
tional polarization theory, but also can be used in the
formation of a modern system of knowledge on con-
densed matter physics as a whole.
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