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Abstract
The paper deals with the problem of dynamics opti-

mization for charged particles beams in accelerators.
The problem of simultaneous minimization of an inte-
gral and minimax functionals is considered. The varia-
tion for the combined functional and the necessary op-
timality condition are obtained. Application for a RFQ
structure is suggested.
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1 Introduction
In this paper we propose a new approach to the prob-

lem of control and optimization of an ensemble of tra-
jectories.
The problem of optimization of the ensemble of tra-
jectories was considered in [D.A. Ovsyannov, 1990],
[D.A. Ovsyannikov, 1997].
Simultaneous optimization of some program mo-
tion and an ensemble of trajectories was studied in
[A.D. Ovsyannikov, 2006]. Application of that ap-
proach to the problems of charged particles beam dy-
namics optimization was studied in [D.A. Ovsyan-
nikov, 2012], [A.D. Ovsyannikov et al., 2015]. Those
papers dealt only with smooth functionals.
Minimax functionals were initially introduced for the
problem of optimization and control of an ensemble of
trajectories in [Demyanov, 1973], and later applied in
the field of the charged particles beam dynamics opti-
mization [D.A. Ovsyannov, 1990].
The present work considers optimization using a com-
bination of integral and minimax functionals, that was
introduced in [Mizintseva, Ovsyannikov, 2015], [Miz-
intseva, Ovsyannikov, 2016].
The latest version of the combined functional contains
a density variable, which allows to take particles dis-
tribution density into consideration [D.A. Ovsyannov,
1990].

In the current paper we consider applications of that
approach to the problem of optimization of the longi-
tudinal motion of the charged particles in a RFQ (radio
frequency quadrupole) accelerator.

2 Statement of the optimization problem
Let us consider the equation of the longitudinal

motion of the charged particles in a RFQ structure
[Kapchinsky, 1982].

dβ

dτ
=

4eUT

W0L
cos(Kz)cos(ω̃τ + φ). (1)

Here τ = ct is the independent variable (t— time, c—
the speed of light), z is the longitudinal coordinate of a
particle in the beam, β is the reduced speed of a parti-
cle, ω̃ = 2πω/c, — the effective frequency of the ac-
celerating RF field, , U is the voltage on the electrodes,
T is the acceleration effectiveness, W0 and e are the
rest energy and the charge of the particle, K = 2π/L,
where L is the lenght of the period, φ is the phase of the
synchronous particle. We also assume, that L = βsλ,
where λ is the wave length of the accelerating field and
βs is the reduced velocity of the synchronous particle.
We will consider the longitudinal motion of the parti-
cles in an equivalent travelling wave and take into ac-
count only the accelerating half-wave, so that the mo-
tion equation (1) for the synchronous particle can be
rewritten as follows [Bondarev, Durkin, Ovsyannikov,
1999], [D.A. Ovsyannikov et al., 2006]

(Λ2)′ = 2kηcosφ. (2)

And the equation in deviations from the synchronous
particle will be

ψ′′+2
Λ′

Λ
ψ′+

Λ′′

Λ
ψ− η

Λ2
(cosφ−cos(φ+ψ)) = 0. (3)



Here ψ = K(zs − z), zs is the coordinate of the
synchromous particle, Λ = βs/β0 (β0 is the initial
reduced velocity of the synchronous particle), η =
UT/(UT )max, k = Ω/ω̃, s = Ωτ ∈ [0, Ts] is the
new independent variable, Ω is defined by the follow-
ing expression

Ω2 =
4(UT )max
W0L2

0

, (4)

where L0 = β0λ .
In equations (2) and (3) derivatives are taken with re-
spect to the new independent variable s.
For the construction of the quality functionals let us in-
troduce the following penalty function

h(p, a) =

{
(p− a)2, p > a

0, p 6 a.
(5)

Using (5), we introduce a smooth functional, that eval-
uates the kinetic energy of the synchronous particle at
the end of the accelerating structure and also consideres
the defocusing factor restrictions for s ∈ [0, Ts]

J1(u) =

∫ Ts

0

h(pdef , ad) ds+ (Λ2(Ts))−aE)2. (6)

Here ad, aE are some fixed values, defocusing factor
pdef is defined as follows [A.D. Ovsyannikov et al.,
2009]

pdef =
2k2|sinφ|

Λ2
. (7)

We will also introduce a minimax functional consid-
ering ρ = ρ(s, ψ, ψ′) — the particles’ distribution den-
sity along the beam of trajectories on the set of terminal
positions Y of the system (3) in the normal form

J2(u) = max
(ψTs ,ψ

′
Ts

)∈Y
p2wρ(Ts, ψTs , ψ

′
Ts

). (8)

Here parameter pw = (Wk − W s
k )/W s

k refers to
the deviations of the energies of the particles in
the beam from the energy of the synchronous parti-
cle, which in terms of Λ and ψ can be written as follows

pw = (pβ + 1)2 − 1, pβ = −k
(
ψ′ + ψ

Λ′

Λ

)
. (9)

Functional (8) allows to consider the most deviating
particles in the process of optimization.

3 Mathematical optimization
Let us generalize the problem stated in the previous

section and consider the following systems of differen-
tial equations

dx

dt
= f(t, x, u), x(0) = x0. (10)

dy

dt
= F (t, x, y, u), y(0) = y0 ∈M0. (11)

dρ

dt
= −ρ · divyF (t, x, y, u), ρ(0) = ρ0(y0). (12)

Here t ∈ [0, T ] — independent variable; x — n–
dimensional phase-vector that refers to Λ2; u =
u(t) — r–dimentional piecewise continuous con-
trol vector-function from a class D that takes value
in a compact set U , in the described model of
particle dynamics in a RFQ: u = (η(s), φ(s));
f(t, x, u) — n–dimentional reasonably smooth vector-
function; y — n–dimensional phase-vector that refers
to the phase vector (ψ,ψ′) from the previous sec-
tion; F (t, x, y, u) — n-dimensional reasonably smooth
vector-function; M0 — a compact set.
Equations (10)–(11) represent equations (2)–(3) rewrit-
ten in the normal form using new notations.
The solution of sub-system (10) is called program mo-
tion and the trajectories of system (11) are called dis-
turbed motions or the ensemble of trajectories. Equa-
tion (12) describes the particles’ distribution density
ρ = ρ(t, y(t) on the trajectories of sub-system (11).
On the solutions of sub-system (10) we will consider
an integral functional, that repeats the structure of func-
tional (6)

I1(u) =

T∫
0

ϕ1(x(t, x0, u))dt+ g(x(T )). (13)

And on the trajectories of system (11) we introduce
a generalized minimax functional (8), that takes par-
ticles’ distribution density into consideration

I2(u) = max
yT∈Y

ϕ2(yT , ρ(yT )), (14)

where Y is the set of terminal positions of the sub-
system (11), defined the following way

Y = {y(T, x0, y0, u) | u ∈ D,
x(0) = x0, y(0) = y0 ∈M0}.

(15)



Functions ϕ1 and ϕ2 in the expressions for the func-
tionals (13) and (14) are non-negative smooth func-
tions.
We will consider a combination of I1(u) and I2(u)

I(u) = I1(u) + I2(u). (16)

The combined functional allows to carry out simulta-
neous optimization of the program motion and the en-
semble of disturbed motions using integral and mini-
max quality criteria.

4 Variation of the functional
Let us write down the variations equations correspod-

ing to systems (10)–(12) [A.D. Ovsyannikov, 2006]

dδx

dt
=
∂f

∂x
δx+ ∆uf,

δx(0) = 0;

dδy

dt
=
∂F

∂x
δx+

∂F

∂y
δy + ∆uF,

δy(0) = 0;

dδρ

dt
= −δρ · divyF − ρ

d(divyδy)

dt
,

δρ(0) = 0.

(17)

Also let us introduce the variation equation for divyδy

d(divyδy)

dt
=
∂(divyF )

∂x
δx+

∂(divyF )

∂y
δy+

+ ∆udivyF,

divyδy(0) = 0.

(18)

Here and further operator ∆u of some function f is
defined the following way

∆uf (t, x, u) = f(t, x, u+ ∆u)− f (t, x, u) . (19)

The variation of the functional represented by a smooth
function is

δI1 =

T∫
0

∂ϕ1

∂x
δxdt+

∂g(x(T ))

∂x
δx(T ). (20)

Variation of the functional I2(u) considering the par-
ticles distribution density can be obtained as follows
[D.A. Ovsyannov, 1990]

δI2 = max
y0∈RT (u)

[
∂ϕ2

∂y
δy(T ) +

∂ϕ2

∂ρ
δρ(T )

]
, (21)

where RT (u) is a set defined by the following expres-
sion

RT (u) = {ȳ0 : ȳ0 ∈M0, ϕ2(y(T, x0, ȳ0, u), ρ) =

= max
y0∈M0

ϕ2(y(T, x0, y0, u), ρ)}.

(22)

Then the variation of the functional (16) is

δI = δI1 + δI2. (23)

Let us choose auxiliary vector-functions ψ, λ and
scalar function χ so that

ψ∗
′
+ ψ∗

∂f

∂x
=

=
∂ϕ1

∂x
− λ∗ ∂F

∂x
+ χ∗ρ

∂(divyF )

∂x
,

ψ∗(T ) = −∂g(x(T ))

∂x
,

λ∗
′
+ λ∗

∂F

∂y
= χ∗ρ

∂(divyF )

∂y
,

λ∗(T ) = −∂ϕ2(yT , ρT )

∂y
,

χ
′

= χdivyF,

χ(T ) = −∂ϕ2(yT , ρT )

∂ρ
.

(24)

Here and further symbol * stands for the operation of
transposition of a vector or matrix.
The variation of the functional (23) using expressions
(24) can be written as follows

δI(u) = max
y0∈RT (u)

−
T∫

0

(ψ∗∆uf + λ∗∆uF−

−χρ∆udivyF ) dt.

(25)

5 Optimality conditions
Let us intriduce Hamilton’s function

H(t, x, y, ρ, ψ, λ, χ, u) = ψ∗f(t, x, u)+

+ λ∗F (t, x, y, u)− χρdivyF.
(26)

Using (26) we can rewrite the expression for the varia-
tion (23), so that

δI(u) = max
y0∈RT (u)

−
T∫

0

(
H(t, x, y, ρ, ψ, λ, χ, ũ)−

−H(t, x, y, ρ, ψ, λ, χ, u)
)
dt.

(27)



Optimal control u0 = u0(t), optimal trajectories x0t =
x0(t), y0t = y0(t) and distribution density on the opti-
mal trajectories ρ0t = ρ0(t, y0t ) comprise the so-called
optimal process.
Theorem If u0 = u0(t) is the optimal control, then for
all t ∈ [0, T ] except for the discontinuity points of the
control function we have

min
u∈U

max
y0∈RT (u0)

(H(t, x0t , y
0
t , ρ

0
t , ψ

0
t , λ

0
t , χ

0
t , u)−

−H(t, x0t , y
0
t , ρ

0
t , ψ

0
t , λ

0
t , χ

0
t , u

0)) = 0,
(28)

where ρ0t , ψ
0
t , λ

0
t , χ

0
t can be found from equations (24)

alongside the optimal process.

6 Conclusion
Simultaneous use of smooth and non-smooth func-

tional in the problem of optimal control allows to per-
form optimization not only for the averaged values, but
also considering the most deflecting particles.
Notably, not only the beam of trajectories is affected
by the dynamics of the program motion, but also in the
process of optimization x(t) is affected by y(t) through
the auxiliary functions, defined by (24).
The obtained expression for the variation of the func-
tional (27) can be used for directional methods of min-
imization. The proposed approach can be applied for
various electro-physical structures, in this particular
paper application for the mathematical model of the
charged particle beam dynamics in RFQ structures was
considered.
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