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Abstract
In this paper we illustrate the use of a novel extremum

seeking scheme recently proposed in [2] to minimize
the percentage of reflected power on the Frascati Toka-
mak Upgrade (FTU) experimental facility during ra-
diofrequency heating. The paper contains an explana-
tion of how the parameters of the extremum seeking
scheme should be selected to induce desirable closed-
loop performance. The effectiveness of the tuning pro-
cedure will be shown via numerical simulations.
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1 Introduction
Since the early 1950s the “extremum seeking” control

has been introduced to minimize/maximize unknown
functions at the output of dynamical systems (see [5]
and [9]). In [8], for the first time, local stability proper-
ties of an extremum seeking feedback scheme for gen-
eral nonlinear systems has been formally proved, mo-
tivating further interesting results (see [1], [6], [10]).
Recently, in [11] an extremum controller slightly differ-
ent from the one in [8] has been shown, under slightly
stronger conditions, to formally guarantee non-local
(semiglobal practical) stability properties.
An application that recently benefited from the use

of extremum seeking techniques is that of control of
Tokamak plasmas. Most of the heating of the current
Tokamak experiments is obtained by Joule effect by
way of a high current flowing in the plasma. However,
since the plasma resistivity drops down as the temper-
ature increases, alternative heating methods are neces-
sary, especially in future experiments such as ITER [7],
which is the ultimate worldwide international experi-
ment jointly built by the international community in
Cadarache (France). Among these alternative methods,

radiofrequency heating seems to be the most promis-
ing and definitely the most widely experimented one.
In this method, high frequency waves are delivered to
the plasma via suitable antennas and the correspond-
ing energy is absorbed by the plasma and transformed
into heat via the same phenomenon that happens in
microwave ovens: resonant modes of ions and elec-
trons (or even hybrid resonances). The reason why
extremum seeking is needed in these applications is
that there’s an important coupling between the antenna
and the plasma Scrape Off Layer (SOL), namely the
outer surface of the plasma within the Tokamak vac-
uum vessel. If the coupling is poor, then reflected
waves can damage the antenna and typically cause un-
desired safety shutdowns. Moreover, the effectiveness
of the radiofrequency heating is evidently proportional
to the coupling between antenna and plasma, because
optimized coupling causes maximum absorbed power,
therefore temperature increase.

In [13], some experimental results on the Frascati
Tokamak Upgrade (FTU) [12], an experiment owned
by ENEA in Frascati (Rome, Italy), showed that when
using the Lower Hybrid (LH) antennas of FTU, naive
solutions to the problem of minimizing the reflected
power already gave desirable performance improve-
ments. The problem with these early solutions was
slow convergence and lack of any guarantee. Later
experiments employed a modified extremum seeking
technique to solve the same problem [4], which showed
increased performance and robustness in experiments,
as compared to the previous solution of [13], even
though from the experimental results it was evident that
the algorithm employed had some space for improve-
ment. Finally, implementation issues arising from the
use of multiple antennas were reported in [3].

In this paper we discuss about parameters tuning of
the new extremum seeking scheme proposed in [2].
The choice depending on the plant and noise properties
is discussed and shown via simulation examples The



paper is organized as follows. In Section 2 the con-
trol scheme is recalled and some general ideas on the
parameters tunings are outlined. Section 3 illustrates
by two examples the extremum seeking construction
and new phenomena related to the parameter selection.
Conclusions are given in 4.

2 The control scheme
In this section we recall the control scheme proposed

in [2], whose aim is to find a reference signal for a dy-
namical system such that an unknown function of its
output is minimized. The control scheme that we con-
sider to deal with this problem is shown in Figure 1.
The unknown map isg(·), with inputy andd, the out-
put of the first order linear dynamical system and the
disturbance signal, respectively. The parameterε > 0
sets the convergence speed ofy to σθ, whereδ > 0 is
the static gain of the linear plant. The noisesν1 and
ν2 affect the measurements which are filtered by two
SISO systemsF (s). The output of a unit saturation is
fed with the signalk2z1(t)z2(t) and is integrated and
multiplied byk1, yielding the plant referenceθ(t), with
positive scalarsk1 andk2.
Note that the first order plant that we are considering

can be the approximation of a higher order asymptoti-
cally stable system. The output difference between the
real plant and its approximation may be enclosed in the
signald(t). Assumptions about the unknown function
g(·) and the signalsd(t), ν1(t), and ν2(t) are intro-
duced next.

Assumption 1. The unknown mapg(·) : R → R is
locally Lipschitz, locally bounded and there exist a
y⋆ ∈ R and a classK functionγ(·) : R≥0 → R≥0

such that for almost alls ∈ R:

∇g(s)(s − y⋆) ≥ |s − y⋆|γ(|s − y⋆|). (1)

�

This assumption implies thatg(·) is in the incremental
sector(0,∞) aroundy⋆, its minimum.

Assumption 2. The disturbanced(·) is bounded and
has bounded first (|ḋ(t)| ≤ d̄) and second time deriva-
tives, moreover, it is such that there existT > 0 and
c > 0 satisfying

∫

t+T

t

|ḋ(τ)|dτ ≥ c (2)

for all t ≥ 0. The noise signalsν1 andν2 are bounded
and with bounded derivatives. �

Without any noise,ν1 = ν2 = 0, and under the hypoth-
esis that the filters can compute the ideal derivative, that

is F (s) = s, the closed loop dynamics is

εẏ = −y + δθ,

z1(t) = ẏ(t) + ḋ(t),

z2(t) =
∂g(y(t) + d(t))

∂y

(

ẏ(t) + ḋ(t)
)

,

θ̇ = −k1sat (k2z2(t)z1(t)) ,

(3)

and the following theorem stated in [2] holds.

Theorem 1. Under Assumptions 1-2, for any positive
constantsk1 andk2, the closed-loop system (3) is such
that both y(·) and θ(·) are bounded, the setA =
B(y⋆, 2εk1 + d̄) with d̄ := ‖d(·)‖∞ is eventually for-
ward invariant1 and attractive and

g(y(t)) ≤ max
a∈A

{g(a), g(y(0))}, ∀ t ≥ 0.

�

Note that the saturation block in the feedback loop
limits θ̇ below k1. This is an appealing property for
“risky” plants or when rapidly changing signals may
excite high frequency dynamics. Moreover, this ap-
proach allows to meet rate saturation constraints of the
actuators.

εẏ = −y + δθ g(y + d)

d
+

θ

y

+

×
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Figure 1. The dynamic extremum seeking scheme.

It can be shown that the global result of Theorem 1,
which holds withF (s) = s andν1 = ν2 = 0, becomes
semiglobal and with a larger bound on the maximal dis-
tancey−y⋆ when measurement noise is present and the
filter

F (s) =
s

(τ1s + 1)n
, (4)

with n ≥ 2, is considered in place of the ideal deriva-
tive. The aim of this filter is twofold and is a key ingre-
dient of the scheme: it has to estimate the time deriva-
tives of the input and the output ofg(·), to resemble

1The setB(r0, r) denotes the ball centered inr0 with radiusr.



the filters in the ideal case, and it has to filter out the
measurements noisesν1 and ν2. To match these re-
quirements, it is necessary that a “frequency” separa-
tion between (at least some components of) the signal
d(t) and the measurement noises exits.
Note that in this framework we consider the output of

the plant as a simple first order linear dynamical sys-
tem plus a signald(t) which takes into account distur-
bances, plant nonlinearities and model approximations.
To give an idea, with respect to the FTU facilities, the
transfer function that linksy, the plasma’s horizontal
position, with θ, can be approximated by a first or-
der linear model, whereas the signald(t) models the
plasma horizontal fluctuations induced by the actuator
nonlinearities and disturbances. Those fluctuations are
then considered by the controller to retrieve the mini-
mum of g(·), i.e., the signald(t) is considered as the
“virtual” probing signal in terms of the classical ex-
tremum seeking approach [8; 11; 4]. These considera-
tions lead to choosing the filter parameters so thatF (s)
approximates a time derivative action in the frequency
range of (the useful components of)d(t), i.e. when
ω << 1/τ1, and it is a low-pass filter at higher frequen-
cies so as to filter out the measurement noise by tuning
the value ofn ≥ 2 and resulting in a sharp band-pass
filter.
Note that unlike the classical extremum seeking
scheme, the “probing” signald(t) does not need to be
sinusoidal but simply needs to satisfy the persistence of
excitation condition (2).

3 Tuning the extremum seeking parameters
In this section, we show by means of two different ex-

amples how the control parametersk1, k2, τ1, andn
can be chosen to drivey close toy⋆. First note thatk1

multiplies the filter outputsz1(t) andz2(t) after the sat-
uration, so it is associated with the large signal behavior
and also corresponds to the maximum time derivatives
of θ(t). Conversely,k2 multiplies the signals before
the saturation, so it is associated with the small sig-
nal behavior and its effect is negligible for large signals
where the saturation is active.k2 can then be seen as
the square root of the static gain ofF (s). Increasing
values of the integer parametern increase the steep-
ness of the Bode diagram forω > 1/τ1, resulting in a
stronger low-pass action.

3.1 First example
In this first example we consider the unknown func-

tion g(y) = (y − 4)2, y(0) = 0, ε = 0.01, δ = −2,
d(t) = 0.05 sin(

√
2t) + 0.02 sin(30

√
3t) and no mea-

surement noise,ν1 = 0 andν2 = 0.
Since no noise is affecting the system, we may select
the filter to resemble a time derivative as much as pos-
sible, so we setτ1 = 10−4. With this choice, the
filter is able to approximate the derivative of the two
terms ofd(t). The simulation results are shown in Fig-
ure 2 for different values ofk1 = {1, 2, 10} and fixed

k2 = 1, whereas in Figure 3k2 = {0.1, 1, 10} and
k1 = 1. It is clear the following role of the two

Figure 2. First example: simulation results.g(y(t)) (solid) and

θ(t) (dash-dotted)k1 = {1, 2, 10} andk2 = 1.

Figure 3. First example: simulation results usingk1 =
{1, 2, 10} andk2 = 1.

gainsk1 andk2: k1 strongly increases the convergence
rate of y to y⋆ and |θ̇| ≤ k1, whereask2 acts more
like a “magnifier” to converge to the minimum when
z1 and z2 are small. Generally, the greaterε is, the
smallerk1 should be. This is also suggested by the
boundA = B(y⋆, 2εk1 + d̄) in Theorem 1.
It is also interesting to analyze the case withτ1 = 0.05

depicted in Figure 4, withk1 = k2 = 1. In this case
the filter does not perform a sufficient approximation
of ḋ(t), then the feedback system induces oscillations
which themselves are interpreted by the controller as
the “probing signal”. Those oscillations have lower
frequency than those ofd, and the filter is able to per-
form a slightly better approximation of their derivative.
Therefore, the system starts to converge towards the



minimum. Certainly, the amplitude and the frequency
of those oscillations depend critically on the value ofε
andk1, as shown in Figure 5 fork1 = 10. This is an in-
teresting property of this approach: any signal which is
feed into the filter as long as its time derivative can be
approximated with sufficient precision, can be regarded
as an eligible “probing” signal.

Figure 4. First example: simulation result withτ1 = 0.05 and

k1 = k2 = 1.

Figure 5. First example: simulation result withτ1 = 0.05, k1 =
10 andk2 = 1.

3.2 Second example
In the second example we consider a measurement

noise given by

ν1(t) = w1(t) + 0.05 sin(60t), (5)

ν2(t) = w2(t) + 0.05 sin(150t), (6)

where w1 and w2 are band-limited white Gaussian
noises (as implemented in Matlab) with zero mean and
power 2e − 5. Note that the second component of
d(t) = 0.05 sin(

√
2t) + 0.02 sin(30

√
3t) has almost

the same frequency of the sinusoidal component of the
noiseν1. However, we may selectτ1 = 0.01 obtain-
ing a good approximation of the derivative of the first
component ofd(t) and filtering out what remains. Sim-
ulation results are shown in Figure 6 forn = {2, 4},
g(y) = (y − 4)2, y(0) = 0, ε = 0.01, δ = −2 and
k1 = 2, k2 = 1. Increasing the value ofn helps to filter
out the noise enhancing the closed loop performance.

Figure 6. Second example: increasing the value ofn from 2 to 4.

In another set of tests reported in Figure 7, we try
to exploit the self excitation property discussed in the
previous example, but when the measurement noise is
nonzero. In particular, we selectτ1 = 0.05 and we
show the results for different values ofn = {2, 4, 6}.
This time, increasingn reduces the performance of the
system: this is due to the fact that ifn increases, the
approximation of the derivative becomes worse for sig-
nals with frequency around the value of1/τ1 because
of the multiple poles in1/τ1, and with the selected gain
k1 andε = 0.01, the frequency of the oscillations in-
duced by the closed loop system are close to this value
as well.
Finally, in Figure 8 we show how decreasingk1 from

2 to 1, with n = 6, increases the performance of the
system for large times because the oscillations are re-
duced. This improvement can be explained by two rea-
sons: the bound given on Theorem 1, and the fact that
the self oscillations have slower frequency and the filter
can approximate better their time derivatives.

4 Conclusions
In this paper we conveyed how the controller param-

eters of the new extremum seeking scheme proposed
in [2] can be selected to induce desirable closed-loop
performance. It has been shown how the filter can be



Figure 7. Second example: increasingn reduces the performance

of the system.

Figure 8. Second example: decreasingk1 from2 to1 to get closer

to the minimum dealing with small1/τ1 andn = 6.

chosen depending on the property of the disturbance
affecting the nonlinearity input signal and of the noise
affecting the measurements. The relation between the
controller gainsk1, k2 and the filter parameterτ1 has
been discussed, highlighting the property of self exci-
tation which may lead to improved convergence even
when the approximated derivative of the signald(t) can
hardly be evaluated.
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